Skip to main content
Log in

Prediction and Control of Thermal Scratch Defect on Surface of Strip in Tandem Cold Rolling

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The thermal scratch significantly influences the surface quality of the cold rolled stainless steel strip. In order to establish a precise mathematical model of oil film thickness in deformation zone, the lubrication in cold rolling process of B443NT stainless steel strip was studied in the laboratory. According to the principle of statistics, a mathematical model of critical oil film thickness in deformation zone for thermal scratch was built, with fitting and regression analytical method, and then based on temperature comparison method, the criterion for deciding thermal scratch defect was put forward. Storing and calling data through SQL Server 2005, a software on thermal scratch control was developed in the Microsoft Visual Studio 2008 environment by MFC technique for stainless steel in tandem cold rolling, and then it was used into the practical production. Statistical results demonstrated that the hit rate of thermal scratch arrives at 91.47%, the occurrence rate of thermal scratch is decreased by 87.81%, and rolling speed is increased by 7.3%. The developed software is of significance to the control of products quality of stainless steel strips, and the analysis and solution to the problem of thermal scratch defects in tandem cold rolling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. R. Wang, M. Hua, X. C. Wei, Wear 271 (2011) 1166–1173.

    Article  Google Scholar 

  2. Y. L. Wang, S. M. Hsu, Wear 217 (1998) 104–109.

    Article  Google Scholar 

  3. G. Subhash, W. Zhang, Wear 252 (2002) 123–134.

    Article  Google Scholar 

  4. V. Vitry, F. Delaunois, C. Dumortier, Surf. Coat. Technol. 202 (2008) 3316–3324.

    Article  Google Scholar 

  5. D. R. Petersen, R. F. El-Hajjar, B. A. Kabor, Eng. Fract. Mach. 90 (2012) 30–40.

    Article  Google Scholar 

  6. N. Saito, Y. Hemmi, T. Arima, M. Oishi, Wear 201 (1996) 145–154.

    Article  Google Scholar 

  7. S. K. Varma, R. R. Romero, Wear 201 (1996) 121–131.

    Article  Google Scholar 

  8. Y. L. Liang, E. Moghbelli, H. Sue, Polymer 53 (2012) 604–617.

    Article  Google Scholar 

  9. E. Moghbelli, R. L. Browning, W. J. Boo, Tribolo. Int. 41 (2008) 425–432.

    Article  Google Scholar 

  10. D. H. Kim, B. M. Kim, Y. Lee, J. Mater. Process. Technol. 139 (2003) 414–421.

    Article  Google Scholar 

  11. Z. H. Bai, A. M. Wu, J. F. Wang, X. D. Li, F. P. Chen, J. Iron Steel Res. 18 (2006) No. 1, 20–23.

    Google Scholar 

  12. G. J. Qiu, J. Sun, Z. H. Bai, Metallurgical Equipment 163 (2007) No. 3, 23–26.

    Google Scholar 

  13. W. J. Jin, T. H. Ren, Lubricating Oil 26 (2011) No. 3, 56–61.

    Google Scholar 

  14. A. K Tieu, P. B. Kosasih, A. Godbole, Tribolo. Int. 39 (2006) 1591–1600.

    Article  Google Scholar 

  15. C. Lu, A. K. Tieu, Z. Y. Jiang, J. Mater. Process. Technol. 140 (2003) 569–575.

    Article  Google Scholar 

  16. L. R. Ma, J. B. Luo, C. H. Zhang, S. H. Liu, X. C. Lu, D. Guo, J. B. Ma, T. Zhu, Colloids and Surfaces A: Physicochem. Eng. Aspects 340 (2009) 70–76.

    Article  Google Scholar 

  17. M. Saniei, M. Salimi, J. Mater. Process. Technol. 177 (2006) 575–581.

    Article  Google Scholar 

  18. Z. Y. Jiang, A. K. Tieu, Wear 263 (2007) 1447–1453.

    Article  Google Scholar 

  19. P. Singh, R. K. Pandey, Y. Nath, J. Mater. Process. Technol. 200 (2008) 238–249.

    Article  Google Scholar 

  20. J. S. Chen, C. S. Li, Chin. J. Mech. Eng. 27 (2014) 738–744.

    Article  Google Scholar 

  21. G. W. Grime, Nucl. Instr. Meth. B 306 (2013) 76–80.

    Article  Google Scholar 

  22. S. Incerti, R. W. Smith, M. Merchant, G W. Grime, F. Meot, L. Serani, P. Moretto, C. Touzeau, P. Barberet, C. Habchi, D. T. Nguyen, Nucl. Instr. Meth. B 231 (2005) 76–85.

    Google Scholar 

  23. Z. J. Wang, L. Wu, Y. L. Qi, Surf. Coat. Technol. 204 (2010) 3315–3318.

    Article  Google Scholar 

  24. W. J. Zhang, D. Zhang, Y. K. Le, L. Lian, O. Bin, Appl. Surf. Sci. 255 (2008) 2671–2674.

    Article  Google Scholar 

  25. S. Suzuki, S. Umino, C. Kato, Kawasaki Steel Technical Report 23 (2003) 66–67.

    Google Scholar 

  26. A. H. Battez, R. Gonzalez, J. L. Viesca, Tribol. Int. 58 (2013) 71–78.

    Article  Google Scholar 

  27. J. S. Chen, C. S. Li, J. Northeast. Univ. Nat. Sci. 35 (2014) 524–528.

    Google Scholar 

  28. L. Gong, Y. P. Lu, J. Iron Steel Res. 19 (2007) No. 3, 88–92.

    Google Scholar 

  29. P. Carlsson, U. Bexell, M. Olsson, Surf. Coat. Technol. 132 (2000) 169–180.

    Article  Google Scholar 

  30. L. G. Garza, C. J. van Tyne, J. Mater. Process. Technol. 187–188 (2006) 164–168.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-shan Chen.

Additional information

Foundation Item: Item Sponsored by National Natural Science Foundation of China (51174057, 51274062); National High Technology Research and Development Program of China (2012AA03A503)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Js., Li, Cs. Prediction and Control of Thermal Scratch Defect on Surface of Strip in Tandem Cold Rolling. J. Iron Steel Res. Int. 22, 106–114 (2015). https://doi.org/10.1016/S1006-706X(15)60017-6

Download citation

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(15)60017-6

Key words

Navigation