Skip to main content
Log in

Modified arrhenius-type constitutive model and artificial neural network-based model for constitutive relationship of 316LN stainless steel during hot deformation

  • Material
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Hot compression experiments of 316LN stainless steel were carried out on Gleeble-3500 thermo-simulator in deformation temperature range of 1223–1423 K and strain rate range of 0.001−1 s−1. The flow behavior was investigated to evaluate the workability and optimize the hot forging process of 316LN stainless steel pipes. Constitutive relationship of 316LN stainless steel was comparatively studied by a modified Arrhenius-type analytical constitutive model considering the effect of strain and by an artificial neural network model. The accuracy and effectiveness of two models were respectively quantified by the correlation coefficient and absolute average relative error. The results show that both models have high reliabilities and could meet the requirements of engineering calculation. Compared with the analytical constitutive model, the artificial neural network model has a relatively higher predictability and is easier to work in cooperation with finite element analysis software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Changizian, A. Zarei-Hanzaki, A. A. Roostaei, Mater. Des. 39 (2012) 384–389.

    Article  Google Scholar 

  2. C. M. Sellars, W. J. McTegart, Acta Metall. 14 (1966) 1136–1138.

    Article  Google Scholar 

  3. Y. C. Lin, M. S. Chen, J. Zhang, Mech. Res. Commun. 35 (2008) 142–150.

    Article  Google Scholar 

  4. D. Samantaray, S. Mandal, A. K. Bhaduri, Comput. Mater. Sci. 47 (2009) 568–576.

    Article  Google Scholar 

  5. A. Mirzaei, A. Zarei-Hanzaki, N. Haghdadi, A. Marandi, Mater. Sci. Eng. A 589 (2014) 76–82.

    Article  Google Scholar 

  6. F. Feng, S. Huang, Z. Meng, J. Hu, Y. Lei, M. Zhou, Z. Yang, Mater. Sci. Eng. A 594 (2014) 334–343.

    Article  Google Scholar 

  7. Y. C. Lin, Y. C. Xia, X. M. Chen, M. S. Chen, Comput. Mater. Sci. 50 (2010) 227–233.

    Article  Google Scholar 

  8. Y. C. Lin, M. S. Chen, J. Zhong, Comput. Mater. Sci. 42 (2008) 470–477.

    Article  Google Scholar 

  9. A. Ma, F. Roters, D. Raabe, Acta Mater. 54 (2006) 2169–2179.

    Article  Google Scholar 

  10. S. Ghosh, P. Chakraborty, Int. J. Fatigue 48 (2013) 231–246.

    Article  Google Scholar 

  11. Z. M. Huang, Comp. Struct. 77 (2007) 270–279.

    Article  Google Scholar 

  12. C. J. Bennett, Comput. Mater. Sci. 70 (2013) 114–122.

    Article  Google Scholar 

  13. K. Lu, Science 328 (2010) 319–320.

    Article  Google Scholar 

  14. A. He, G. L. Xie, H. L. Zhang, X. Wang, Mater. Des. 52 (2013) 677–685.

    Article  Google Scholar 

  15. Y. C. Lin, X. M. Chen, Mater. Des. 32 (2011) 1733–1759.

    Article  Google Scholar 

  16. R. Liang, A. S. Khan, Int. J. Plasticity 15 (1999) 963–980.

    Article  Google Scholar 

  17. J. L. Chaboche, Int. J. Plasticity 24 (2008) 1642–1693.

    Article  Google Scholar 

  18. G. R. Johnson, W. H. Cook, in: Proceedings of the 7th International Symposium on Ballistics, The Hague, The Netherlands, 1983, pp. 541–543.

    Google Scholar 

  19. P. J. Zerilli, R. W. Armstrong, J. Appl. Phys. 61 (1987) 1816–1825.

    Article  Google Scholar 

  20. C. Zener, H. Hollomon, J. Appl. Phys. 15 (1944) 22–32.

    Article  Google Scholar 

  21. J. Jonas, C. M. Sellars, W. J. McTegart, Int. Metal. Rev. 14 (1969) 1–24.

    Article  Google Scholar 

  22. H. Shi, A. J. McLaren, C. M. Sellars, Mater. Sci. Technol. 13 (1997) 210–216.

    Article  Google Scholar 

  23. Y. C. Lin, M. S. Chen, J. Zhang, Mater. Des. 30 (2009) 908–913.

    Article  Google Scholar 

  24. A. He, L. Chen, S. Wang, L. Huangfu, Adv. Mater. Res. 683 (2013) 488–491.

    Article  Google Scholar 

  25. A. He, L. Chen, S. Hu, C. Wang, L. Huangfu, Mater. Des. 46 (2013) 54–60.

    Article  Google Scholar 

  26. A. He, G. L. Xie, H. L. Zhang, X. Wang, Mater. Des. 56 (2014) 122–127.

    Article  Google Scholar 

  27. D. Samantaray, S. Mandal, A. K. Bhaduri, Comput. Mater. Sci. 47 (2009) 568–576.

    Article  Google Scholar 

  28. D. Samantaray, S. Mandal, A. K. Bhaduri, Mater. Sci. Eng. A 528 (2011) 5204–5211.

    Article  Google Scholar 

  29. D. Samantaray, S. Mandal, A. K. Bhaduri, Mater. Des. 31 (2010) 981–984.

    Article  Google Scholar 

  30. G. L. Xie, X. T. Wang, L. Chen, Mater. Sci. Technol. 28 (2012) 778–782.

    Article  Google Scholar 

  31. Y. Han, G. J. Qiao, J.P. Sun, D. Zou, Comput. Mater. Sci. 67 (2013) 93–103.

    Article  Google Scholar 

  32. B. Li, Q. L. Pan, Z. M. Yin, J. Alloys Comp. 584 (2014) 406–416.

    Article  Google Scholar 

  33. X. Xiao, G. Q. Liu, B. F. Hu, X. Zheng, L. N. Wang, S. J. Chen, A. Ullah, Comput. Mater. Sci. 62 (2012) 227–234.

    Article  Google Scholar 

  34. G. L. Ji, F. G. Li, Q. H. Li, H. Li, Z. Li, Mater. Sci. Eng. A 528 (2011) 4774–4782.

    Article  Google Scholar 

  35. Q. B. Liu, Z. Ji, M. B. Liu, S. C. Wu, J. Mater. Process. Technol. 62 (1996) 206–210.

    Article  Google Scholar 

  36. R. Haj-Ali, H. K Kim, S. W. Koh, A. Saxena, R. Tummala, Int. J. Plasticity 24 (2008) 371–396.

    Article  Google Scholar 

  37. S. Mandal, P. V. Sivaprasad, S. Venugopal, K. P. N. Murthy, B. Raj, Mater. Sci. Eng. A 485 (2008) 571–580.

    Article  Google Scholar 

  38. Y. Sun, W. D. Zeng, X. Ma, Intermetallics 19 (2011) 1014–1019.

    Article  Google Scholar 

  39. Y. C. Lin, J. Zhang, J. Zhong, Comput. Mater. Sci. 43 (2008) 752–758.

    Article  Google Scholar 

  40. H. J. McQueen, S. Yue, N. D. Ryan, J. Mater. Process. Technol. 53 (1995) 293–310.

    Article  Google Scholar 

  41. H. J. McQueen, N. D. Ryan, Mater. Sci. Eng. A 322 (2002) 43–63.

    Article  Google Scholar 

  42. C. Phaniraj, D. Samantaray, S. Mandal, A. K. Bhaduri, Mater. Sci. Eng. A 528 (2011) 6066–6071.

    Article  Google Scholar 

  43. A. Laasraoui, J. J Jonas, Metall. Mater. Trans. A 22 (1991) 1545–1558.

    Article  Google Scholar 

  44. M. Wei, Study on Dynamic Recrystallization and Processing Map of 316LN Stainless Steel, Kunming University of Science and Technology, Kunming, 2012.

    Google Scholar 

  45. M. M. Chen, Experimental and Simulation Study of Microstructure Evolution of 316LN Stainless Steel during Forging, Taiyuan University of Science and Technology, Taiyuan, 2010.

    Google Scholar 

  46. K. Cai, J. T. Xia, L. T. Li, Z. L. Gui, Comput. Mater. Sci. 34 (2005) 166–172.

    Article  Google Scholar 

  47. X. Xiao, G. Q. Liu, B. F. Hu, Comput. Mater. Sci. 62 (2012) 227–234.

    Article  Google Scholar 

  48. X. Ma, W. Zeng, Y. Sun, K. Wang, Y. Lai, Y. Zhou, Mater. Sci. Eng. A 538 (2012) 182–189.

    Article  Google Scholar 

  49. E. M. Bezerra, A. C. Ancelotti, L. C. Pardini, J. A. F. F. Rocco, K. Iha, C. H. C. Ribeiro, Mater. Sci. Eng. A 464 (2007) 177–185.

    Article  Google Scholar 

  50. A. R. Shahani, S. Setayeshi, S. A. Nodamaie, M. A. Asadi, S. Rezaie, J. Mater. Process. Technol. 209 (2009) 1920–1935.

    Article  Google Scholar 

  51. M. Bagheripoor, H. Bisadi, Appl. Math. Modell. 37 (2013) 4593–4607.

    Article  Google Scholar 

  52. R. Kapoor, D. Pal, J. K. Chakravartty, J. Mater. Process. Technol. 169 (2005) 199–205.

    Article  Google Scholar 

  53. Y. C. Lin, G. Liu, M. S. Chen, J. Zhong, J. Mater. Process. Technol. 209 (2009) 4611–4616.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-long Zhang.

Additional information

Foundation Item: Item Sponsored by National High-tech Research and Development Program (“863” Program) of China (2012AA03A507, 2012AA050901)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, A., Wang, Xt., Xie, Gl. et al. Modified arrhenius-type constitutive model and artificial neural network-based model for constitutive relationship of 316LN stainless steel during hot deformation. J. Iron Steel Res. Int. 22, 721–729 (2015). https://doi.org/10.1016/S1006-706X(15)30063-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(15)30063-7

Key words

Navigation