Skip to main content
Log in

Intelligent multivariable modeling of blast furnace molten iron quality based on dynamic AGA-ANN and PCA

  • Metallurgy and Metal Working
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Blast furnace (BF) ironmaking process has complex and nonlinear dynamic characteristics. The molten iron temperature (MIT) as well as Si, P and S contents of molten iron is difficult to be directly measured online, and large-time delay exists in offline analysis through laboratory sampling. A nonlinear multivariate intelligent modeling method was proposed for molten iron quality (MIQ) based on principal component analysis (PCA) and dynamic genetic neural network. The modeling method used the practical data processed by PCA dimension reduction as inputs of the dynamic artificial neural network (ANN). A dynamic feedback link was introduced to produce a dynamic neural network on the basis of traditional back propagation ANN. The proposed model improved the dynamic adaptability of networks and solved the strong fluctuation and resistance problem in a nonlinear dynamic system. Moreover, a new hybrid training method was presented where adaptive genetic algorithms (AGA) and ANN were integrated, which could improve network convergence speed and avoid network into local minima. The proposed method made it easier for operators to understand the inside status of blast furnace and offered real-time and reliable feedback information for realizing close-loop control for MIQ. Industrial experiments were made through the proposed model based on data collected from a practical steel company. The accuracy could meet the requirements of actual operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. G. Liu, Q. H. Li, in: Fifth World Congress on Intelligent Control and Automation, WCICA 2004, Vol. 4, IEEE, 2004, pp. 3547–3551.

  2. S. Ueda, S. Natsui, H. Nogami, J. Yagi, T. Ariyama, ISIJ Int. 50 (2010) 914–923.

    Article  Google Scholar 

  3. L. Jian, C. H. Gao, Z. H. Xia, IEEE Trans. Autom. Sci. Eng. 9 (2012) 763–777.

    Article  Google Scholar 

  4. R. Usamentiaga, J. Molleda, D. F. Garcia, J. C. Granda, J. L. Rendueles, IEEE Trans. Instrum. Meas. 61 (2012) 1149–1159.

    Article  Google Scholar 

  5. C. Staib, N. Jusseau, J. Vigliengo, J. C. Cochery, Ironmaking Proceedings 26 (1967) 66–83.

    Google Scholar 

  6. J. M. Vanlangen, Blast Furnace Technology, SME, New York, 1972.

    Google Scholar 

  7. J. F. Sun, X. Q. Gao, Annual Review in Automatic Programming 16 (1991) Part 1, 159–163.

    Article  Google Scholar 

  8. R. J. Zhang, J. Lu, G Q. Zhang, Eur. J. Oper. Res. 215 (2011) 194–203.

    Article  Google Scholar 

  9. P. Georgilakis, N. Hatziargyriou, D. Paparigas, IEEE Cornput. Appl. Power 12 (1999) No. 4, 41–46.

    Article  Google Scholar 

  10. H. Saxen, C. H. Gao, Z. W. Gao, IEEE Trans. Indus. Inf. 9 (2013) 2213–2225.

    Article  Google Scholar 

  11. L. Jian, C. H. Gao, L. Li, J. S. Zeng, ISIJ. Int. 48 (2008) 1659–1661.

    Article  Google Scholar 

  12. L. Shi, Z. L. Li, T. Yu, J. P. Li, J. Iron Steel Res. Int. 18 (2011) No. 10, 13–16.

    Article  Google Scholar 

  13. Y. Wang, J. Zhou, S. Wang, Elektrotechnik und Informationstechnik 117 (2000) 18–23.

    Article  Google Scholar 

  14. V. R. Radhakrishnan, A. R. Mohamed, J. Process Control 10 (2000) 509–524.

    Article  Google Scholar 

  15. D. Qiu, D. J. Zhang, W. You, N. N. Zhang, H. Li, in: International Conference on Apperceiving Computing and Intelligence Analysis, ICACIA 2009, IEEE, 2009, pp. 61–64.

  16. J. Chen, Eng. Appl. Artif. Intell. 14 (2011) 77–85.

    Article  Google Scholar 

  17. Q. H. Li, in: IEEE International Conference on Automation and Logistics, ICAL 2008, IEEE, 2008, pp. 1896–1898.

  18. N. Y. Zhang, W. Lin, C. D. Chen, Q. F. Wu, Control Eng. Pract. 2 (1994) 65–70.

    Google Scholar 

  19. J. Zhang, E. Martin, A. J. Morris, in: Proceedings of the 1995 American Control Conference, IEEE, 1995, pp. 751–755.

  20. S. Ding, P. Zhang, E. Ding, S. Yin, A. Naik, P. Deng, Q. Gui, Tsinghua Sci. Tech. 15 (2010) 138–144.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Zhou.

Additional information

Foundation Item: Item Sponsored by National Natural Science Foundation of China (61290323, 61333007, 614730646); IAPI Fundamental Research Funds (2013ZCX02-09); Fundamental Research Funds for the Central Universities of China (N130508002, N130108001); National High-tech Research and Development Program of China (2015AA043802)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, M., Zhou, P., Li, Ml. et al. Intelligent multivariable modeling of blast furnace molten iron quality based on dynamic AGA-ANN and PCA. J. Iron Steel Res. Int. 22, 487–495 (2015). https://doi.org/10.1016/S1006-706X(15)30031-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(15)30031-5

Key words

Navigation