Skip to main content
Log in

Precipitation Strengthening by Nanometer-sized Carbides in Hot-rolled Ferritic Steels

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The mechanical properties of the hot-rolled plates of Ti steel and Ti-Mo steel after isothermal transformation in a temperature range of 600–700 °C for 60 min have been tested, and the microstructures of the matrix and the characteristics of precipitated nanometer-sized carbides have also been examined by scanning electron microscopy and transmission electron microscopy. The precipitation regularity of nanometer-sized carbides has been studied by thermodynamic method and the contributions of corresponding strengthening mechanisms to the total yield strength have been calculated. The tensile strength of hot-rolled Ti-Mo ferritic steel can achieve 780 MPa with an elongation of 20.0% after being isothermally treated at 600 °C for 60 min, and the tensile strength of Ti steel is 605 MPa with an elongation of 22.7%, according to the results of tensile tests. The critical nucleation size of (Ti, Mo)C is smaller than that of TiC at a given isothermal temperature, but the nucleation rate of (Ti, Mo)C is larger than that of TiC. The grain-refinement strengthening and precipitation strengthening contribute the main amount of the total yield strength. The major increase in yield strength with the decrease of isothermal temperature results from the contribution of precipitation strengthening. The contribution of precipitation strengthening to the yield strength of the steels has been estimated. The ferrite phase can be strengthened by about 400 MPa through precipitation strengthening in Ti-Mo steel isothermally treated at 600 °C for 60 min, which is about 200 MPa higher than that of Ti steel under the same conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Funakawa, T. Shiozaki, K. Tomita, T. Yamamoto, E. Maeda, ISIJ Int. 44 (2004) 1945–1951.

    Article  Google Scholar 

  2. X. Wang, H. Di, C. Zhang, L. Du, X. Dong, J. Iron Steel Res. Int. 19 (2012) No. 6, 64–69.

    Article  Google Scholar 

  3. H. Yi, L. Du, G. Wang, X. Liu, J. Iron Steel Res. Int. 16 (2009) No. 4, 72–77.

    Article  Google Scholar 

  4. Y. Shen, C. Wang, X. Sun, Mater. Sci. Eng. A 528 (2011) 8150–8156.

    Article  Google Scholar 

  5. H. Yi, Z. Liu, G. Wang, D. Wu, J. Iron Steel Res. Int. 17 (2010) No. 12, 54–58.

    Article  Google Scholar 

  6. A. D. Batte, R. Honeycombe, Metal Sci. 7 (1973) 160–168.

    Article  Google Scholar 

  7. R. Okamoto, A. Borgenstam, J. Agren, Acta Mater. 58 (2010) 4783–4790.

    Article  Google Scholar 

  8. H. Yen, P. Chen, C. Huang, J. Yang, Acta Mater. 59 (2011) 6264–6274.

    Article  Google Scholar 

  9. S. Mukherjee, I. B. Timokhina, C. Zhu, S. P. Ringer, P. D. Hodgson, Acta Mater. 61 (2013) 2521–2530.

    Article  Google Scholar 

  10. J. Cao, Precipitation of Carbonitrides in Nb-Mo-bearing Microalloyed Steels, Kunming University of Science and Technology, Kunming, 2006.

    Google Scholar 

  11. H. Li, Z. Jiang, Z. Zhang, Y. Yang, J. Iron Steel Res. Int. 16 (2009) No. 1, 58–61.

    Article  Google Scholar 

  12. T. Gladman, Mater. Sci. Technol. 15 (1999) 30–36.

    Article  Google Scholar 

  13. H. Yen, C. Huang, J. Yang, Scripta Mater. 61 (2009) 616–619.

    Article  Google Scholar 

  14. M. Nagoshi, T. Kawano, K. Sato, JFE Technical Report 28 (2007) No. 9, 12–15.

    Google Scholar 

  15. W. B. Lee, S. G. Hong, C. G. Park, S. H. Park, Scripta Mater. 43 (2000) 319–324.

    Article  Google Scholar 

  16. W. Lee, S. Hong, C. Park, S. Park, Metall. Mater. Trans. A 33 (2002) 1689–1698.

    Article  Google Scholar 

  17. Y. Huang, A. Zhao, Z. Zhao, W. Sun, D. Zhao, K. Bao, J. Univ. Sci. Technol. Beijing 7 (2013) 882–889.

    Google Scholar 

  18. Q. Yong, Z. Liu, X. Sun, J. Cao, X. Zha, Y. Zhang, Iron Steel Vanadium Titanium 26 (2005) No. 3, 20–24.

    Google Scholar 

  19. F. Fang, Q. Yong, C. Yang, Y. Zhang, Acta Metall. Sin. 45 (2009) 625–629.

    Google Scholar 

  20. Q. Yong, M. Chen, H. Pei, L. Pan, X. Zhou, T. Yang, W. Zhong, J. Hao, J. Iron Steel Res. 18 (2006) No. 3, 30–32.

    Google Scholar 

  21. F. B. Pickering, Physical Metallurgical and the Design of Steels, Applied Science Publishers Ltd., London, 1978.

    Google Scholar 

  22. D. A. Hughes, Mater. Sci. Eng. A 319–321 (2001) 46–54.

    Article  Google Scholar 

  23. A. J. E. Foreman, M. J. Makin, Canadian Journal of Physics 45 (1967) 511–517.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-pei Wang.

Additional information

Foundation Item: Item Sponsored by National Natural Science Foundation of China (51271035)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Xp., Zhao, Am., Zhao, Zz. et al. Precipitation Strengthening by Nanometer-sized Carbides in Hot-rolled Ferritic Steels. J. Iron Steel Res. Int. 21, 1140–1146 (2014). https://doi.org/10.1016/S1006-706X(14)60196-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(14)60196-5

Key words

Navigation