Skip to main content
Log in

Vortex Flow Pattern in a Slab Continuous Casting Mold with Argon Gas Injection

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

An Eulerian-Eulerian two-fluid model was developed to study the vortex flow inside a slab continuous casting mold with argon gas injection. Interfacial momentum transfer that accommodated various interfacial forces including drag force, lift force, virtual mass force, and turbulent dispersion force was considered. Predicted results agree well with experimental measurements of the water model in two-phase flow pattern and vortex flow structures. Three typical flow patterns with different argon steel ratios (ASRs) have been obtained: “double roll”, “three roll”, and “single roll”. The flow pattern inside the mold alternates among the three types or it may attain some intermediate condition. With increasing ASR, the positions of vortices move from the submerged entry nozzle to the narrow face of the mold, and the sizes of vortices are reduced gradually. The rotating directions of vortices are all from high velocity area to low velocity area. Two mechanisms of vortex formation on the top surface have been suggested, i. e., congruous shear flow and incongruous shear flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C1, C2:

Empirical constants

CD:

Drag force coefficient

CL:

Lift force coefficient

CT:

Turbulent dispersion force coefficient

CVM:

Virtual mass force coefficient

db:

Bubble diameter, m

Fr:

Froude number

Frm:

Modified Froude number

fg:

Gas volume fraction

f1:

Liquid volume fraction

g:

Acceleration of gravity, m/s2

k:

Turbulent kinetic energy, m2/s2

L:

Characteristic length, m

M1,g:

Total interfacial force of liquid phase acting on gas phase, N/m3

Mg,1:

Total interfacial force of gas phase acting on liquid phase , N/m3

MD:

Drag force, N/m3

ML:

Lift force, N/m3

MVM:

Virtual mass force, N/m3

MT:

Turbulent dispersion force, N/m3

ρ:

Static pressure, N/m2

Q:

Fluid flow rate, m3/s

Reg:

Bubble Reynolds number

t:

Time, s

U:

Velocity, m/s

V:

Volume, m3

υg:

Velocity of gas phase, m/s

υ1:

Velocity of liquid phase, m/s

ρg:

Density of gas phase, kg/m3

ρ1:

Density of liquid phase, kg/m3

μg:

Molecular viscosity of gas phase, m2/s

μ1:

Molecular viscosity of liquid phase, m2/s

μt:

Turbulent viscosity, m2/s

ℰ:

Turbulent kinetic dissipation, m2/s3

σk, σ:

Empirical constants; Subscript

xi, xj:

x, y, or z direction

g:

Gas phase

1:

Liquid phase

References

  1. L. F. Zhang, S. B. Yang, K. K. Cai, J. Y. Li, X. G. Wan, B. G. Thomas, Metall. Mater. Trans. B 38 (2007) 63–83.

    Article  Google Scholar 

  2. R. C. Sussman, M. T. Burns, X. Huang, B. G. Thomas, I&SM 20 (1993) 14–16.

    Google Scholar 

  3. Y. Miki, H. Ohno, Y. Kishimoto, S. Tanaka, Tetsu-to-Hagané 97 (2011) 423–432.

    Article  Google Scholar 

  4. H. Q. Yu, M. Y. Zhu, J. Wang, J. Iron Steel Res. Int. 17 (2010) No. 4, 5–11.

    Article  Google Scholar 

  5. B. Z. Shen, H. F. Shen, B. C. Liu, Ironmak. Steelmak. 36 (2009) 33–38.

    Article  Google Scholar 

  6. H. L. Xu, G. H. Wen, P. Tang, CISC Technology 4 (2011) 49–54.

    Google Scholar 

  7. B. K. Li, F. Tsukihashi, ISIJ Int. 45 (2005) 30–36.

    Article  Google Scholar 

  8. Y. H. Wang, in: 73th Steelmaking Conference Proceedings, Iron and Steel Society, Detroit, 1991, pp. 473–480.

    Google Scholar 

  9. Q. L. He, ISIJ Int. 33 (1993) 343–345.

    Article  Google Scholar 

  10. M. Gebhard, Q. L. He, J. Herbertson, in: 76th Steelmaking Conference Proceedings, Iron and Steel Society, Dallas, 1993, pp. 441–446.

    Google Scholar 

  11. C. A. Real-Ramirez, J. I. Gonzalez-Trejo, Int. J. Miner. Metall. Mater. 18 (2011) 397–407.

    Article  Google Scholar 

  12. B. K. Li, F. Tsukihashi, ISIJ Int. 46 (2006) 1833–1838.

    Article  Google Scholar 

  13. R. Chaudhary, G. G. Lee, B. G. Thomas, S. M. Cho, S. H. Kim, O. D. Kwon, Metall. Mater. Trans. B 42 (2011) 300–315.

    Article  Google Scholar 

  14. L. F. Zhang, B. G. Thomas, ISIJ Int. 43 (2003) 271–291.

    Article  Google Scholar 

  15. J. M. Zhang, J. C. He, B. K. Li, Acta Metall. Sin. 31 (1995) 269–274.

    Google Scholar 

  16. M. Iguchi, N. Kasai, Metall. Mater. Trans. B 31 (2000) 453–460.

    Article  Google Scholar 

  17. J. X. Lu, W. K. Wang, J. M. Zhang, X. H. Wang, W. J. Wang, F. Qie, J. Univ. Sci. Technol. Beijing 28 (2006) 34–37.

    Google Scholar 

  18. V. Singh, S. K. Dash, J. S. Sunitha, S. K. Ajmani, A. K. Das, ISIJ Int. 46 (2006) 210–218.

    Article  Google Scholar 

  19. H. Bai, B. G. Thomas, Metall. Mater. Trans. B 32 (2001) 253–268.

    Article  Google Scholar 

  20. N. G. Deen, T. Solberg, B. H. Hjertager, Chem. Eng. Sci. 56 (2001) 6341–6349.

    Article  Google Scholar 

  21. M. T. Dhotre, B. Niceno, B. L. Smith, Chem. Eng. J. 136 (2008) 337–348.

    Article  Google Scholar 

  22. D. A. Drew, R. T. Lahey Jr., Int. J. Multiphase Flow 13 (1987) 113–121.

    Article  Google Scholar 

  23. M. Lopez-de-Bertodano, Turbulent Bubbly Two-phase Flow in a Triangular Duct, Rensselaer Polytechnic Institute, New York, 1991.

    Google Scholar 

  24. D. Gupta, A. K. Lahiri, Metall. Mater. Trans. B 27 (1996) 757–764.

    Article  Google Scholar 

  25. A. Ramos-Banderas, R. Sánchez-Pérez, L. Demedices-García, J. Palafox-Ramos, M. Díaz-Cruz, R. D. Morales, Metall. Mater. Trans. B 35 (2004) 449–460.

    Article  Google Scholar 

  26. Z. Q. Liu, B. K. Li, M. F. Jiang, F. Tsukihashi, ISIJ Int. 53 (2013) 484–492.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-qiu Liu.

Additional information

Foundation Item: Item Sponsored by National Natural Science Foundation of China (51210007, 51004029)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Zq., Qi, Fs., Li, Bk. et al. Vortex Flow Pattern in a Slab Continuous Casting Mold with Argon Gas Injection. J. Iron Steel Res. Int. 21, 1081–1089 (2014). https://doi.org/10.1016/S1006-706X(14)60187-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(14)60187-4

Key words

Navigation