Skip to main content
Log in

Growth Rate, Microstructure and Phase Composition of Oxide Scales for Three Typical Steels in Simulated Continuous Casting Process

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Growth rate, microstructure and phase composition of scale layer formed during oxidation in 56%H2O-9%O2-N2 and following continuous cooling in ambient air were experimentally investigated by means of optical microscopy, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) and X-ray diffraction (XRD) for 45, 20CrMnTi and TTS443M steels respectively, to examine the effects of strand surface temperature and steel composition on the scale formation in simulated continuous casting process. The growth rates were found to be approximately parabolic and the calculated activation energy of TTS443M steel is much higher than those of the two other steels. For 45 and 20CrMnTi steels, the scale layers were looser and a distinct gap formed at the scale-substrate interface at higher strand surface temperature. The dominant phases within the scale were iron oxides except for FeO • Cr2O3 phase simultaneously existing in the oxide scale of 20CrMnTi steel. On the other hand, the scale layer formed on TTS443M steel was compact and tightly attached to the steel surface. At both lower and higher strand surface temperature, iron oxide was main phase in external layer of the scale, while chromia was dominant in inner layer with an appreciable Cr enrichment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. M. Wolf, I&SM 27 (2000) 69–71.

    Google Scholar 

  2. K. Kajitani, M. Wakoh, N. Tokumitsu, S. Ogibayashi, S. Mizoguchi, Tetsu-to-Hagane 81 (1995) 185–190.

    Article  Google Scholar 

  3. H. G. Suzuki, ISIJ Int. 37 (1997) 250–254.

    Article  Google Scholar 

  4. R. Y. Chen, W. Y. D. Yuen, ISIJ Int. 45 (2005) 807–816.

    Article  Google Scholar 

  5. R. Wendelstorf, K. H. Spitzer, J, Wendelstorf, Int. J. Heat Mass Transfer 51 (2008) 4892–4901.

    Article  Google Scholar 

  6. C. Köhler, R. Jeschar, R. Scholz, J. Slowik, G. Borchardt, Steel Res. Int. 61 (1990) 295–301.

    Article  Google Scholar 

  7. J. Slowik, G. Borchardt, C. Köhler, R. Jeschar, R. Scholz, Steel Res. Int. 61 (1990) 302–311.

    Article  Google Scholar 

  8. R. Viscorová, R. Scholz, K. H. Spitzer, in: AIST (Eds.), AISTech 2006 Proceedings, AISTECH, Cleveland, 2006, pp. 519–528.

  9. S. Hayashi, T. Sekimoto, K. Honda, K. Takeshi, K. Tanaka, K. Ushioda, T. Narita, S. Ukai, ISIJ Int. 49 (2009) 1938–1944.

    Article  Google Scholar 

  10. R. Chen, W. Y. D. Yuen, Oxid. Met. 59 (2003) 433–468.

    Article  Google Scholar 

  11. R. Chen, W. Y. D. Yuen, Oxid. Met. 56 (2001) 89–118.

    Article  Google Scholar 

  12. V. V. Basabe, J. A. Szpunar, ISIJ Int. 44 (2004) 1554–1559.

    Article  Google Scholar 

  13. W. H. Sun, A. K. Tieu, Z. Y. Jiang, C. Lu, H. T. Zhu, J. Mater. Process. Technol. 140 (2003) 76–83.

    Article  Google Scholar 

  14. S. W. Kim, H. G. Lee, Steel Res. Int. 80 (2009) 121–129.

    Google Scholar 

  15. D. J. Ha, Y. J. Kim, J. S. Lee, Y. D. Lee, S. Lee, Metall. Mater. Trans. A 40 (2009) 1080–1089.

    Article  Google Scholar 

  16. N. Wang, H. Wen, W. J. Huang, N. Y. Dou, M. Chen, in: F. Marquis (Eds.), PRICM 8 Proceedings, John Wiley and Sons Inc., Waikoloa, 2013, pp. 747–752.

    Book  Google Scholar 

  17. N. Wang, J. H. Dong, B. Li, M. Chen, C. H. Huang, in: J. Yurko, L. F. Zhang, A. Allanore, C. Wang (Eds.), EPD Congress 2014 Proceedings, Minerals, Metals and Materials Society, San Diego, 2014, pp. 417–422.

  18. R. Viscorova, R. Scholz, K. H. Spitzer, J. Wendelstorf, in: B. Sundyn, C. A. Brebbia (Eds.), Proceedings of 9th International Conference on Advanced Computational Methods in Heat Transfer, WTT Press, Southampton, 2006, pp. 1–9.

  19. M. Alizadehl, H. Edris, A. Shafyei, International Journal of ISSI 4 (2006) 7–16.

    Google Scholar 

  20. S. Taniguchi, T. Furukara, T. Shibata, ISIJ Int. 37 (1997) 263–271.

    Article  Google Scholar 

  21. A. C. S. Sabioni, A. M. Huntz, E. C. Luz, M. Mantel, C. Haut, Mater. Res. 6 (2003) 179–185.

    Article  Google Scholar 

  22. A. M. Huntz, A. Reckmann, C. Haut, C. Sévéracb, M. Herbsta, F. C. T. Resendec, A. C. S. Sabionic, Mater. Sci. Eng. A 447 (2007) 266–276.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nan Wang or Min Chen.

Additional information

Foundation Item: Item Sponsored by National Natural Science Foundation of China (51174052, 51174049, 51374062, 51374057); Fundamental Research Funds for the Central Universities of China (110402009)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Dong, Jh., Huang, Wj. et al. Growth Rate, Microstructure and Phase Composition of Oxide Scales for Three Typical Steels in Simulated Continuous Casting Process. J. Iron Steel Res. Int. 21, 1065–1072 (2014). https://doi.org/10.1016/S1006-706X(14)60185-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(14)60185-0

Key words

Navigation