Skip to main content
Log in

Numerical Simulation of Microstructure Evolution for SA508-3 Steel During Inhomogeneous Hot Deformation Process

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Based on hot compression tests by a Gleeble-1500D thermo-mechanical simulator, the flow stress model and microstructure evolution model for SA508-3 steel were established through the classical theories on work hardening and softening. The developed models were integrated into 3D thermal-mechanical coupled rigid-plastic finite element software DEFORM3D. The inhomogeneous hot deformation (IHD) experiments of SA508-3 steel were designed and carried out. Meanwhile, numerical simulation was implemented to investigate the effect of temperature, strain and strain rate on microstructure during IHD process through measuring grain sizes at given positions. The simulated grain sizes were basically in agreement with the experimental ones. The results of experiment and simulation demonstrated that temperature is the main factor for the initiation of dynamic recrystallization (DRX), and higher temperature means lower critical strain so that DRX can be facilitated to obtain uniform fine microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b:

Module of Burgers vector

Ddrx:

DRX grain size, μm

kd:

Material constant

nd:

Material constant

Q:

Deformation activation energy, kJ/mol

R:

Gas constant

T:

Temperature, °C

U:

Multiplication term, m−2

XD:

Percentage of DRX, %

Z:

Zener-Holomon parameter

Ω:

Softening amount of dynamic recovery

α:

Empirical coefficient

:

Strain

c :

Critical strain

p :

Peak strain

:

Strain rate, s−1

µ:

Shear modulus, MPa

ρ:

Dislocation density, m−2

ρ0:

Initial dislocation density, m−2

ρs:

Epitaxial saturated dislocation density, m−2

σ:

Flow stress, MPa

σo:

Initial stress, MPa

σs:

Saturated stress, MPa

σss:

Steady stress, MPa

σWH:

Epitaxial stress, MPa

References

  1. F. Liu, L. Han, J. Gu, J. Pan, Trans. Mater. Heat Treat. 34 (2013) No. 2, 32–36.

    Google Scholar 

  2. W. Pan, Q. Cao, X. Ma, H. Zhang, Z. Zhong, J. Plast. Eng. 5 (1998) No. 4, 17–21.

    Google Scholar 

  3. F. Zhu, Q. Cao, B. Xu, J. Plast. Eng. 7 (2000) No. 1, 1–3.

    Google Scholar 

  4. Y. Yang, J. Shi, G. Cheng, T. Jiang, J. Chongqing Univ. 32 (2009) 1369–1373.

    Google Scholar 

  5. M. Sun, L. Hao, S. Li, D. Li, Y. Li, J. Nucl. Mater. 48 (2011) 269–280.

    Article  Google Scholar 

  6. H. Yang, Z. Sun, M. Zhan, L. Guo, Y. Liu, H. Li, H. Li, Y. Wu, J. Plast. Eng. 15 (2008) No. 2, 6–14.

    Google Scholar 

  7. J. Wei, Q. Li, G. B. Tang, Z. D. Liu, Iron and Steel 41 (2006) No. 7, 74–78.

    Google Scholar 

  8. A. Laasraoui, J. J. Jonas, Metall. Trans. A 22 (1991) 151–160.

    Article  Google Scholar 

  9. A. Laasraoui, J. J. Jonas, Metall. Mater. Trans. A 22 (1991) 1545–1558.

    Article  Google Scholar 

  10. Y. Bergstrom, Mater. Sci. Eng. 5 (1970) 193–200.

    Article  Google Scholar 

  11. Y. Estrin, H. Mecking, Acta Metall. 32 (1984) 57–70.

    Article  Google Scholar 

  12. H. Mecking, U. F. Kocks, Acta Metall. 29 (1981) 1865–1875.

    Article  Google Scholar 

  13. C. M. Sellars, J. A. Whiteman, Met. Sci. 13 (1979) 187–194.

    Article  Google Scholar 

  14. R. Colas, J. Mater. Process. Technol. 62 (1996) 180–184.

    Article  Google Scholar 

  15. M. E. Wahabi, J. M. Cabrera, Mater. Sci. Eng. A 343 (2003) 116–125.

    Article  Google Scholar 

  16. L. Kong, P. D. Hodgson, J. Mater. Process. Technol. 89–90 (1999) 44–45.

    Article  Google Scholar 

  17. F. Chen, Z. Cui, S. Chen, Mater. Sci. Eng. A 528 (2011) 5073–5080.

    Article  Google Scholar 

  18. B. H. Lee, N. S. Reddy, J. Mater. Process. Technol. 187–188 (2007) 766–769.

    Article  Google Scholar 

  19. Y. Lin, M. Chen, J. Mater. Process. Technol. 205 (2008) 308–315.

    Article  Google Scholar 

  20. M. Poursina, H. Ebrahimi, J. Mater. Process. Technol. 199 (2008) 287–294.

    Article  Google Scholar 

  21. W. Li, Z. Cui, D. Sui, Die Mould Tech. 2 (2011) No. 2, 8–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-shan Sui.

Additional information

Foundation Item: Item Sponsored by National Basic Research Program (973 Program) of China (2011CB012903); National Natural Science Foundation of China (51075270)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sui, Ds., Chen, F., Zhang, Pp. et al. Numerical Simulation of Microstructure Evolution for SA508-3 Steel During Inhomogeneous Hot Deformation Process. J. Iron Steel Res. Int. 21, 1022–1029 (2014). https://doi.org/10.1016/S1006-706X(14)60178-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(14)60178-3

Key words

Navigation