Skip to main content
Log in

Combustion Property and Kinetic Modeling of Pulverized Coal Based on Non-Isothermal Thermogravimetric Analysis

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Non-isothermal combustion kinetics of two kinds of low volatile pulverized coals (HL coal and RU coal) were investigated by thermogravimetric analysis. The results show that the combustibility of HL coal was better than that of RU coal, and with increasing heating rate, ignition and burnout characteristics of pulverized coal were improved. The volume model (VM), the random pore model (RPM), and the new model (NEWM) in which the whole combustion process is considered to be the overlapping process of volatile combustion and coal char combustion, were used to fit with the experimental data. The comparison of these three fitted results indicated that the combustion process of coal could be simulated by the NEWM with highest precision. When calculated by the NEWM, the activation energies of volatile combustion and coal char combustion are 130.5 and 95.7 kJ • mol−1 for HL coal, respectively, while they are 114.5 and 147.6 kJ • mol−1 for RU coal, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. M. Fisher, C. Dupont, L. I. Darvell, J. M. Commandre, A. Saddawi, J. M. Jones, M. Grateau, T. Nocquet, S. Salvador, Bioresour. Technol. 119 (2012) 119–157.

    Article  Google Scholar 

  2. R. Barranco, A. Rojas, J. Barraza, E. Lester, Fuel 88 (2009) 2335–2339.

    Article  Google Scholar 

  3. S. Porada, Fuel 83 (2004) 1191–1196.

    Article  Google Scholar 

  4. P. R. Solomon, M. A. Serio, G. V. Despande, E. Kroo, Energ. Fuel 4 (1990) 42–54.

    Article  Google Scholar 

  5. S. Porada, Fuel 83 (2004) 1071–1078.

    Article  Google Scholar 

  6. J. Tomeczek, S. Gil, Fuel 82 (2003) 285–292.

    Article  Google Scholar 

  7. J. Y. Zhang, B. Wang, Y. J. Yan, Z. L. Zhen, J. S. Gao, J. East Chin. Univ. Sci. Technol. 26 (2000) 642–645.

    Google Scholar 

  8. T. P. Griffin, J. B. Howard, W. A. Peters, Energ. Fuel 7 (1993) 297–305.

    Article  Google Scholar 

  9. T. P. Griffin, J. B. Howard, W. A. Peters, Fuel 73 (1994) 591–601.

    Article  Google Scholar 

  10. C. Q. Zhang, X. M. Jiang, L. H. Wei, H. Wang, Energy Convers. Manage. 48 (2007) 797–802.

    Article  Google Scholar 

  11. S. Kasaoka, Y. Sakata, C. Tong, Int. Chem. Eng. 25 (1985) 160–175.

    Google Scholar 

  12. S. J. Yuh, E. E. Wolf, Fuel 63 (1984) 1604–1609.

    Article  Google Scholar 

  13. S. K. Bhatia, D. D. Perlmutter, AIChE J. 26 (1980) 379–386.

    Article  Google Scholar 

  14. S. K. Bhatia, D. D. Perlmutter, AIChE J. 27 (1981) 247–254.

    Article  Google Scholar 

  15. J. R. Fernandez, F. Oliva, R. A. Vazquez, Energ. Fuel 25 (2011) 2039–2048.

    Article  Google Scholar 

  16. H. N. Sharma, L. Pahalagedara, A. Joshi, S. L. Suib, A. B. Mhadeshwar, Energ. Fuel 26 (2012) 5613–5625.

    Article  Google Scholar 

  17. N. Zouaoui, J. F. Brilhac, F. Mechati, M. Jeguirim, B. Djelloulli, P. Gilot, J. Therm. Anal. Cal. 102 (2010) 837–849.

    Article  Google Scholar 

  18. A. Khawam, D. R. Flanagan, J. Phys. Chem. B 110 (2006) 17315–17328.

    Article  Google Scholar 

  19. Y. G. Xu, C. Zhang, J. Xia, Y. H. Duan, J. J. Yin, G. Chen, Asia-Pacific Jrnl of Chem. Eng 5 (2010) 435–440.

    Article  Google Scholar 

  20. R. H. Essenhigh, M. K. Misra, D. W. Shaw, Combust. Flame 77 (1989) 3–30.

    Article  Google Scholar 

  21. X. M. Jiang, J. B. Li, J. R. Qiu, Proceedings of CSEE 20 (2000) No. 6, 71–78.

    Google Scholar 

  22. C. L. Qi, J. L. Zhang, X. H. Lin, Q. Y. Liu, X. L. Wang, J. Iron Steel Res. Int. 18 (2011) No. 8, 1–8.

    Article  Google Scholar 

  23. J. L. Zhang, G. W. Wang, X. D. Xing, Q. H. Pang, J. G. Shao, S. Ren, J. Iron Steel Res. 25 (2013) No. 4, 9–14.

    Google Scholar 

  24. S. G. Long, F. Cao, S. W. Wang, L. H. Sun, J. M. Pang, Y. P. Sun, J. Iron Steel Res. Int. 15 (2008) No. 1, 6–9.

    Article  Google Scholar 

  25. S. F. Zhang, C. G. Bai, L. Y. Wen, B. G. Qiu, X. W. Lü, J. Iron Steel Res. Int. 17 (2010) No. 10, 8–12.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiu-gang Shao or Jian-liang Zhang.

Additional information

Foundation Item: Item Sponsored by National Basic Research Program (973 Program) of China (2012CB720401); National Key Technology Research and Development Program in the 12th Five-year Plan of China (2011BAC01B02)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, Jg., Zhang, Jl., Wang, Gw. et al. Combustion Property and Kinetic Modeling of Pulverized Coal Based on Non-Isothermal Thermogravimetric Analysis. J. Iron Steel Res. Int. 21, 1002–1008 (2014). https://doi.org/10.1016/S1006-706X(14)60175-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(14)60175-8

Key words

Navigation