Skip to main content
Log in

Ductile Fracture Prediction of 316LN Stainless Steel In Hot Deformation Process

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

A ductile fracture criterion of 316LN stainless steel, combined with the plastic deformation capacity of material and the stress state dependent damages, was proposed to predict ductile fracture during hot deformation. To the end, tensile tests at high temperatures were first performed to investigate the fracture behavior of 316LN stainless steel. The experimental results show the variation of the critical fracture strain as a function of temperature and strain rate. Second, the criterion was calibrated by using the upsetting tests and the corresponding numerical simulations. Finally, the proposed fracture criterion was validated by the designed tests and the corresponding finite element (FE) simulation. The results show that the criterion can successfully predict the onset of ductile fracture at elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Yang, G. F. Li, C. B. Huang, J. J. Zhou, Z. P. Lu, Chin. J. Mech. Eng. 23 (2010) 677–683.

    Article  Google Scholar 

  2. X. Q. Li, J. J. Zhao, J. C. Xu, X. Liu, J. Mater. Sci. Technol. 27 (2011) 1029–1033.

    Article  Google Scholar 

  3. X. Z. Zhang, Y. S. Zhang, Y. J. Li, J. S. Liu, Mater. Sci. Eng. A 559 (2013) 301–306.

    Article  Google Scholar 

  4. Y. S. Zhang, X. Z. Zhang, X. J. Tian, X. H. Zheng, P. P. Liu, Forging & Stamping Technology 36 (2011) No. 6, 1–3.

    Google Scholar 

  5. X. M. Zhang, W. D. Zeng, Y. Shu, Y. G. Zhou, Y. Q. Zhao, H. Wu, H. Q. Yu, Trans. Nonferrous Met. Soc. China 19 (2009) 267–271.

    Article  Google Scholar 

  6. X. H. Yu, N. Z. Zhai, J. B. Zhai, Mater. Sci. Technol. China 17 (2009) 738–740.

    Google Scholar 

  7. H. Li, M. W. Fu, J. Lu, H. Yang, Int. J. Plasticity 27 (2011) 147–180.

    Article  Google Scholar 

  8. G. Gruben, O. S. Hopperstad, T. Borvik, Int. J. Mech. Sci. 62 (2012) 133–146.

    Article  Google Scholar 

  9. T. B0rvik, O. S. Hopperstad, T. Berstad, European J. Mech. A Solids 22 (2002) 15–32.

    Google Scholar 

  10. A. H. Clausen, T. Borvik, O.S. Hopperstad, A. Benallal, Mater. Sci. Eng. A 364 (2004) 260–272.

    Article  Google Scholar 

  11. G. R. Johnson, W. H. Cook, Eng. Fract. Mech. 21 (1985) 31–48.

    Article  Google Scholar 

  12. T. Wierzbicki, Y. B. Bao, Y. W. Lee, Y. L. Bai, Int. J. Mech. Sci. 47 (2005) 719–743.

    Article  Google Scholar 

  13. S. Alexandrov, P. T. Wang, R. E. Roadman, J. Mater. Process. Technol. 160 (2005) 257–265.

    Article  Google Scholar 

  14. J. L. He, Z. S. Cui, F. Chen, Y. H. Xiao, L. Q. Ruan, Mater. Des. 52 (2013) 547–555.

    Article  Google Scholar 

  15. S. S. Bhattacharya, G. V. Satishnarayana, K. A. Padmanab-han, J. Mater. Sci. 30 (1995) 5850–5866.

    Article  Google Scholar 

  16. A. M. Brown, M. F. Ashby, Scripta Metall. 14 (1980) 1297–1302.

    Article  Google Scholar 

  17. C. M. Seilars, W.J. McTegart, Acta Metall. 14 (1966) 1136–1138.

    Article  Google Scholar 

  18. M. Oyane, Bulletin of the JSME 15 (1972) 1507–1513.

    Article  Google Scholar 

  19. M. Oyane, T. Sato, K. Okimoto, S. Shima, J. Mech. Working Technol. 4 (1980) 65–81.

    Article  Google Scholar 

  20. B. P. P. A. Gouveia, J. M. C. Rodrigues, P. A. F. Martins, Int. J. Mech. Sci. 38 (1996) 361–372.

    Article  Google Scholar 

  21. B. P. P. A. Gouveia, J. M. C. Rodrigues, P. A. F. Martins, J. Mater. Process. Technol. 101 (2000) 52–63.

    Article  Google Scholar 

  22. P. McAllen, P. Phelan, P.I. Mech. Eng. C-J. Mec. 219 (2005) 237–250.

    Article  Google Scholar 

  23. N. Bonora, A. Ruggiero, L. Esposito, D. Gentile, Int. J. Plasticity 22 (2006) 2015–2047.

    Article  Google Scholar 

  24. J. H. Giovanola, S.W. Kirkpatrick, Int. J. Fract. 92 (1998) 101–117.

    Article  Google Scholar 

  25. J. Mackerle, Comp. Mater. Sci. 31 (2004) 187–219.

    Article  Google Scholar 

  26. S. Gupta, N. V. Reddy, P. M. Dixit, J. Mater. Process. Technol. 141 (2003) 256–265.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-shan Cui.

Additional information

Foundation Item: Item Sponsored by National Science and Technology Major Project of China (2011ZX04014-051); National Basic Research Program of China (2011CB012903); 085 Project of Shanghai Univercity of Engineering Science of China (nhky-2013-05)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Jl., Liu, J., Cui, Zs. et al. Ductile Fracture Prediction of 316LN Stainless Steel In Hot Deformation Process. J. Iron Steel Res. Int. 21, 923–930 (2014). https://doi.org/10.1016/S1006-706X(14)60163-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(14)60163-1

Key words

Navigation