Skip to main content
Log in

Numerical Analysis of Fluctuation Behavior of Steel/Slag Interface in Continuous Casting Mold with Static Magnetic Field

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Utilizing ANSYS CFX commercial software and volume fraction of fluid (VOF) model, fluctuation behavior of steel/slag interface was numerically simulated in continuous casting mold with static magnetic field, and the influence of metal jet characteristics on the behavior of steel/slag interface was investigated. The results indicated that the behavior of steel/slag interface is similar at different process parameters, which is closely related to the characteristic of the flow field. The steel/slag interface has an obvious trough characteristic, which can be divided into three zones: frontal valley zone, back valley zone and horizontal zone; as the magnetic flux density increases, the fluctuation of liquid level increases firstly and then decreases, and a reasonable magnetic flux density can make steel/slag interface obtain a relatively flat interface, which can prevent slag from being entrapped into liquid steel. For a thin slab continuous casting process, when the casting speed is 4 m/min, a reasonable magnetic flux density is about 0. 5 T, and the interfacial fluctuation is weaker. No matter the position of magnetic field is horizontal or vertical, for different operating parameters, there is a corresponding reasonable magnetic field position where the steel/slag interface fluctuation can be properly controlled and slag entrapment can be prevented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B 0 :

Magnetic flux density, T

d:

Nozzle diameter, m

E :

Electrical field strength, V/m

F :

Lorentz force, N/m3

f :

Interaction force, N/m3

g :

Gravitational acceleration, m/s2

J :

Current density, A/m2

k:

Turbulent kinetic energy, m2/s2

p:

Pressure, Pa

t:

Time, s

u :

Velocity, m/s

ν:

Normal velocity of inlet, m/s

α:

Volume fraction

ε:

Rate of turbulent energy dissipation, m2/s3

μ:

Effective viscosity, kg/(m · s)

ρ:

Density, kg/m3

σ:

Electrical conductivity of the steel, S/m

ϕ:

Electrical potential, V

m:

Steel

s:

Slag

References

  1. H. Harada, T. Toh, T. Ishii, K. Kaneko, E. Takeuchi, ISIJ Int. 41 (2001) 1236–1244.

    Article  Google Scholar 

  2. K. Cukierski, B. G. Thomas, Metall. Mater. Trans. B 39 (2008) 94–107.

    Article  Google Scholar 

  3. A. Y. Deng, C. F. Wen, E. G. Wang, X. W. Zhang, J. C. He, J. Iron Steel Res. Int. 19 (2012) Suppl. 1-1, 110–113.

    Google Scholar 

  4. H. Jia, Z. Q. Zhang, T. X. Chang, K. Deng, Z. M. Ren, J. Iron Steel Res. Int. 19 (2012) Suppl. 1–2, 1001-1005.

    Article  Google Scholar 

  5. J. Kubota, N. Kubo, M. Suzuki, T. Ishii, R. Nishimachi, N. Aramaki, Tetsu-to-Hagané 86 (2000) 271–277.

    Article  Google Scholar 

  6. B. G. Jin, L. X. Li, D. S. Jia, Y. P. Huang, C. Li, G. J. Yang, Q. Wang, J. C. He, J. Iron Steel Res. Int. 19 (2012) Suppl. 1–2, 858-861.

    Google Scholar 

  7. B. K. Li, F. Tsukihashi, ISIJ Int. 46 (2006) 1833–1838.

    Article  Google Scholar 

  8. Z. M. Ren, Z. Q. Zhang, K. Deng, Z. Yu, Z. S. Lei, J. Iron Steel Res. Int. 18 (2011) Suppl. 2, 227–235.

    Article  Google Scholar 

  9. S. Garcia-Hernandez, R. D. Morales, E. Torres-Alonso, Ironmak. Steelmak. 37 (2010) 360–368.

    Article  Google Scholar 

  10. Q. Y. Zhang, X. H. Wang, J. Iron Steel Res. Int. 17 (2010) No. 8, 15–19.

    Article  Google Scholar 

  11. N. Cao, M. Y. Zhu, Acta Metall. Sin. 43 (2007) 834–838.

    Google Scholar 

  12. H. Q. Yu, M. Y. Zhu, Acta Metall. Sin. 44 (2008) 1141–1148.

    Google Scholar 

  13. Y S. Hwang, P. R. Cha, H. S. Nam, K. H. Moon, J. K. Yoon, ISIJ Int. 37 (1997) 659–667.

    Article  Google Scholar 

  14. T. Teshima, J. Kubota, M. Suzuki, K. Ozawa, T. Masaoka, S. Miyahara, Tetsu-to-Hagané, 79 (1993) 576–582.

    Article  Google Scholar 

  15. Y L. Jin, Y P. Bao, J. H. Liu, H. H. An, J. Univ. Sci. Technol. Beijing 31 (2009) 618–624.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An-yuan Deng.

Additional information

Foundation Item: Item Sponsored by National Natural Science Foundation of China (50604005, 50834009); Natural Science Foundation of Liaoning Province of China (20102074); Fundamental Research Funds for the Central Universities of China (N100409005); Key Grant Project of Chinese Ministry of Education (311014); “111” Project of China (B07015)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Ay., Xu, L., Wang, Eg. et al. Numerical Analysis of Fluctuation Behavior of Steel/Slag Interface in Continuous Casting Mold with Static Magnetic Field. J. Iron Steel Res. Int. 21, 809–816 (2014). https://doi.org/10.1016/S1006-706X(14)60146-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(14)60146-1

Key words

Navigation