Skip to main content
Log in

Mathematical Modeling of Carbon Content and Intercritical Annealing Temperature in DP Steels by Factorial Design Method

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

2k factorial design is employed to find the mathematical relation between the carbon content and intercritical annealing temperature (IAT) in order to predict the responses namely martensite volume fraction (MVF), microhardness (H), yield strength (YS), ultimate tensile strength (UTS), total elongation (TEL), yield ratio (YR) and Charpy impact energy (CIE) in dual phase (DP) steels. Steels containing diferent carbon contents (0. 085% C and 0.380% C) had been chosen for this purpose. The main advantages of factorial design are its easy implementation and the effective computation compared with the other optimization techniques, which were employed for predicting mentioned responses in the literature. To verify the proposed approach based on factorial design, experiments for verification were performed. The results of the verification experiments and the mathematical models are in accordance with each other and the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Hayat, H. Uzun, J. Iron Steel Res. Int. 18 (2011) No. 8, 65–72.

    Article  Google Scholar 

  2. H. Aydin, Z. H. Kazdal, K. Ceylan, J. IronSteel Res. Int. 17 (2010) No. 4, 73–78.

    Google Scholar 

  3. A. A. Sayed, S. Kheirandish, Mater. Sci. Eng. A 532 (2012) 21–25.

    Article  Google Scholar 

  4. S. K. Paul, Comput. Mater. Sci. 56 (2012) 34–42.

    Article  Google Scholar 

  5. N. Peranio, Y. J. Li, F. Roters, D. Raabe, Mater. Sci. Eng. A 527 (2010) 4161–4168.

    Article  Google Scholar 

  6. T. D. Islahani, A. Shalyei, H. Sharili, Fatigue Fract. Eng. Mater. Struct. 32 (2009) 141–147.

    Article  Google Scholar 

  7. V. Colla, M. Desanctis, A. Dimatteo, G. Lovicu, R. Valentin! Metall. Mater. Trans. 42 (2011) 2781–2793.

    Article  Google Scholar 

  8. Y. Prawoto, M. Fanone, S. Shahedi, M. S. Ismail, W. B. Wan Nik, Comput. Mater. Sci. 54 (2012) 48–55.

    Article  Google Scholar 

  9. S. J. Kim, Y. G. Cho, C. S. Oh, D. E. Kim, M. B. Moon, H. N. Han, Mater. Des. 30 (2009) 1251–1257.

    Article  Google Scholar 

  10. M. Asadi, G. Frommeyer, A. Aghajani, I. Timokhina, H. Palkowski, Metall. Mater. Trans. 43 (2012) 1244–1258.

    Article  Google Scholar 

  11. J. Luo, W. Shi, Q. Huang, L. Li, J. Iron Steel Res. Int. 17 (2010) No. 1, 54–58.

    Article  Google Scholar 

  12. H. Liu, F. Li, R. Liu, L. Li, Suri. Coat. Technol. 205 (2011) 3535–3539

    Article  Google Scholar 

  13. N. Farabi. D. L. Chen, Y. Zhou, J. Alloys Compds. 509 (2011) 982–989

    Article  Google Scholar 

  14. D. S. Rao, H. S. Hebbar, M. Komaraiah, U. N. Kempaiah, Mater. Manul. Process. 23 (2008) 295–302.

    Article  Google Scholar 

  15. D. S. Rao, H. S. Hebbar, M. Komaraiah, Mater. Manul. Process. 22 (2007) 825–829.

    Article  Google Scholar 

  16. U. Reisgen, M. Schleser, O. Mokrov, E. Ahmed, Opt. Laser Technol. 44 (2012) 255–262.

    Article  Google Scholar 

  17. M. Hazratinezhad, N. B. Mostala, A. R. Sulizadeh, M. J. Torkamany, Mater. Des. 33 (2012) 83–87.

    Article  Google Scholar 

  18. N. Farabi. D. L. Chen, J. Li, Y. Zhou, S. J. Dong, Mater. Sci. Eng. A 527 (2010) 1215–1222.

    Article  Google Scholar 

  19. X. Liao, X. Wang, Z. Guo, M. Wang, Y. Wu, Y. Rong, Mater. Charact. 61 (2010) 341–346.

    Article  Google Scholar 

  20. F. Hayat, J. Iron Steel Res. Int. 18 (2011) No. 9, 70–78.

    Article  Google Scholar 

  21. V. H. B. Hernandez, S. K. Panda, M. L. Kuntz, Y. Zhou, Mater. Lett. 64 (2010) 207–210.

    Article  Google Scholar 

  22. L. R. Bhagavathi, G. P. Chaudhari, S. K. Nath, Mater. Des. 32 (2011) 433–440.

    Article  Google Scholar 

  23. P. P. Sarkar, P. Kumar, M. K. Manna, P. C. Chakraborti, Mater. Lett. 59 (2005) 2488–2491.

    Article  Google Scholar 

  24. I. J. Park, S. T. Kim, I. S. Lee, Y. S. Park, M. B. Moon, Mater. Trans. 50 (2009) 1440–1447.

    Article  Google Scholar 

  25. O. Kelestemur, S. Yildiz. Constr. Build. Mater. 23 (2009) 7884

    Article  Google Scholar 

  26. P. K. Ray, R. I. Ganguly, A. K. Panda, Mater. Sci. Eng. A 346 (2003) 122–131.

    Article  Google Scholar 

  27. D. C. Montgomery, Design andAnalysis of Experiments, Fifth ed., John Wiley & Sons, Inc., New York, 2001.

    Google Scholar 

  28. F. G. Giesbrecht, M. L. Gumpertz, Planning, Construction, and Statistical Analysis of Comparative Experiments, John Wiley & Sons, Inc., New Jersey, 2004.

    Book  Google Scholar 

  29. R. L. Mason, R. F. Gunst, J. L. Hess, Statistical Design and Analysis of Experiments, Second ed., John Wiley & Sons, Inc., New Jersey, 2003.

    Book  Google Scholar 

  30. E. D. Castillo, Process Optimization—A Statistical Approach, Springer, New York, 2007.

    Book  Google Scholar 

  31. A. P. Modi, Tribol. Int 40 (2007) 490–497.

    Article  Google Scholar 

  32. P. Movahed, S. Kolahgar, S. P. H. Marashi, M. Pouranvari, N. Parvin, Mater. Sci. Eng. A 518 (2009) 1–6.

    Article  Google Scholar 

  33. F. G. Caballero, A. G. Junceda, C. Capdevila, C. G. Andres, Mater. Trans. 47 (2006) 2269–2276.

    Article  Google Scholar 

  34. A. Bag, K. K. Ray, E. S. Dwarakadasa, Metall. Mater. Trans. 30 (1999) 1193–1202.

    Article  Google Scholar 

  35. M. Pouranvari, MJoM 16 (2010) 187–194.

    Google Scholar 

  36. N. Fonstein, M. Kapustin, N. Pottore, I. Gupta, O. Yakubosky, Phys. Met. Metallog. 104 (2007) 315–323.

    Article  Google Scholar 

  37. O. Henry, K. C. Monde, Mater. Res. 11 (2008) 97–101.

    Article  Google Scholar 

  38. M. A. Maleque, Y. M. Poon, H. H. Masjuki. J. Mater. Process. Technol. 153–154 (2004) 482–487.

    Article  Google Scholar 

  39. G. R. Speich, in; Fundamentalsof Dual-phaseSteels: Proceedings of a Symposium, The Metall. Soc., Ann Arbor, 1981, pp. 1–45.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gülcan Toktas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toktas, G., Toktas, A. & Karaoglan, A.D. Mathematical Modeling of Carbon Content and Intercritical Annealing Temperature in DP Steels by Factorial Design Method. J. Iron Steel Res. Int. 21, 715–722 (2014). https://doi.org/10.1016/S1006-706X(14)60111-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(14)60111-4

Keywords

Navigation