Skip to main content
Log in

Simplified Weighted Velocity Field for Prediction of Hot Strip Rolling Force by Taking into Account Flatening of Rolls

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The weighted velocity field was simplified for analysis of hot strip roling. Using the field and GM (geometric midline) yield criterion, the deformation power, friction power and shear power were obtained respectively. Summing the partial power contributions, the total deformation power for strip roling was presented. Then, by minimizing the power function, the roling force was obtained; meanwhile, considering the efect of rol elastic flattening, iterative calculation of the rol radius was carried out until the radius was convergent. On-line data were compared with the calculated results to verify the model accuracy. It was indicated that the calculated roling forces were basicaly in agreement with the measured ones since the maximumerror was less than 10? 0%. Moreover, the efects of various roling conditions such as thickness reduction, friction factor and shape factor, upon separating force, location of neutral angle, and stress state coeficient were discussed systematicaly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

hx, hm:

Half of the plate thickness and half of the average plate thickness in the rol gap

α, β, γ:

Direction angles formed by τf and the coordinate axes in x, y, z directions

h0, h1:

Half of the initial and final plate thickness at entry and exit in deformation zone

v0, v1:

Velocity of plate at entry and exit in deformation zone

h, Δh:

Plate thickness and half of the absolute reduction

τf:

Frictional shear stress on the plate surface

Δvf:

Discontinuous quantity of tangential velocity

ε:

Logarithmic reduction per pass

ε̇:

Strain rate

αn:

Position of neutral angle

θ:

Contact angle

ε̇x, ε̇y, ε̇z:

Strain rate component along x, y, z directions

R, R′:

Radius of work rol, flatening radius

ε̇min, ε̇max:

Minimum and maximum strain rate

hx′:

The first order derivatives of hx

n σ :

Stress state coeficient

l:

Projected length of roll-workpiece-contact arc

χ:

Leverarm ratio

b:

Plate width

F:

Roling force

i :

Deformation power

D(ε̇ij):

Plastic specific work rate

f :

Friction power

σ s :

Yield stress

χ:

Arm factor

s :

Shear power

k:

Yield shear stress

t:

Temperature

J*:

Total power

J* min:

Minimum value of total power

m:

Friction factor

M min :

Minimum value of roling torque

vx, vy, vz:

Velocity components in x, y, z directions

F min :

Minimum value of roling force

U:

Flow volume per second of the deformation part

v R :

Roll circumferential velocity.

References

  1. S. Kobayashi, T. Altan, S. Oh, Metal Forming and the Finite Element Method, Oxford University Press, Oxford, 1989.

    Google Scholar 

  2. S. M. Hwang, M.S. Joun, Int. J. Mech. Sci. 34 (1992) 971–984.

    Article  Google Scholar 

  3. S. W. Xiong, J. M. C. Rodrigues, P. A. F. Martins, Fin. Elem Anal. Des. 32 (1999) 221–233.

    Article  Google Scholar 

  4. W.J. Kwak, Y. H. Kim, H. D. Park, J. H. Lee, S. M. Hwang, ISIJ Int. 40 (2000) 1013G1018.

    Article  Google Scholar 

  5. X. S. Wang, Y. Peng, L.P. Xu, H. M. Liu, J. Iron Steel Res. Int. (2010) No. 9, 36–39.

    Article  Google Scholar 

  6. Y. K. Kim, W. J. Kwak, T. J. Shin, S. M. Hwang, ISIJ Int. 50 (2010) 1644–1652.

    Article  Google Scholar 

  7. T. von Karman, Zeitschriftfur Angewandte Mathematik and Mechanik (1925) No. 5, 139–141.

    Google Scholar 

  8. E. Orowan, Proc. Inst. Mech. Eng. 150 (1943) 140–167.

    Article  Google Scholar 

  9. R. B. Sims, Proc. Inst. Mech. Eng. 168 (1954) 191–200.

    Article  Google Scholar 

  10. W. Johnson, H. Kudo, Int. J. Mech. Sci. 2 (1960) 175–191.

    Article  Google Scholar 

  11. S. I. Oh, S. Kobayashi, Int. J. Mech. Sci. 17 (1975) 293–305.

    Article  Google Scholar 

  12. K. Kato, T. Murota, T. Kumagai, Jap. Soc. Tech. Plasticity 231 (1980) No. 21, 359–369.

    Google Scholar 

  13. Z. F. Wang, Z. Y. Zhao, Iron and Steel 28 (1993) No. 9, 29–33

    Google Scholar 

  14. D. W. Zhao, S. H. Zhang, C. M. Li, H. Y. Song, G. D. Wang, J. Iron Steel Res. Int. 19 (2012) No. 3, 20–24.

    Article  Google Scholar 

  15. S. H. Zhang, D. W. Zhao, C. R. Gao, Int J. Mech. Sci. 57 (2012) 74–78.

    Article  Google Scholar 

  16. Y. K. Sun, Model and the Control of Hot Strip Mill, Metallurgical Industry Press, Beijing, 2007.

    Google Scholar 

  17. W. Deng, D.W. Zhao, X. M. Qin, X. H. Gao, L. X. Dun, X. H. Liu, J. Iron Steel Res. Int. 17 (2010) No. 3, 28–33.

    Article  Google Scholar 

  18. D.W. Zhao, G.J. Wang, X. H. Liu, G. D. Wang, Trans. Nonf. Met. Soci. Ch. 18 (2008) No. 1, 46–52.

    Article  Google Scholar 

  19. G.J. Wang, H. J. Du, D.W. Zhao, X. H. Liu, G. D. Wang, J. Iron Steel Res. Int. 16 (2009) No. 6, 1, 3–17.

    Google Scholar 

  20. S. H. Zhang, D.W. Zhao, C. R. Gao, J. Northeast. Univ. Nat. Sci. 32 (2011) 1570–1573.

    Google Scholar 

  21. D. W. Zhao, J. Z. Xu, H. Yang, Proc. Int. Sym. on Strength Theory, Science Press, New York, 1998.

    Google Scholar 

  22. D. W. Zhao, Y. J. Xie, X. H. Liu, G. D. Wang, J. Northeast. Univ. Nat. Sci. 25 (2004) 121–124.

    Google Scholar 

  23. D. W. Zhao. Mathematical Solution of Continuum Forming Force, Northeastern University Press, Shenyang, 2003.

    Google Scholar 

  24. G. D. Wang, D. W. Zhao, Modern Material Forming Mechanics, Northeastern University Press, Shenyang, 2004.

    Google Scholar 

  25. Z. Y. Zhao, Metal Plastic Deformation and Rolling Theory, Metallurgical Industry Press, Beijing, 1980.

    Google Scholar 

  26. H. J. Li, L. J. Shi, J. Z. Xu, G. D. Wang, J. Northeast. Univ. Nat. Sci. 30 (2009), 369–372.

    Article  Google Scholar 

  27. X. H. Liu, X. L. Hu, L. X. Du, Rolling Parameter Calculation Model and Its Application, Chemistry Industry Press, Beijing, 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dian-hua Zhang or Jian-zhao Cao.

Additional information

Foundation Item: Item Sponsored by National Natural Science Foundation of China (51074052, 50734002)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Dh., Cao, Jz., Xu, Jj. et al. Simplified Weighted Velocity Field for Prediction of Hot Strip Rolling Force by Taking into Account Flatening of Rolls. J. Iron Steel Res. Int. 21, 637–643 (2014). https://doi.org/10.1016/S1006-706X(14)60099-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(14)60099-6

Key words

Navigation