Skip to main content
Log in

Comprehensive Mathematical Model and Optimum Process Parameters of Nitrogen Free Blast Furnace

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

According to diferent energy utilization in diferent regions, blast furnace is divided into raceway zone, botom heat exchange zone (BHZ), thermal reserve zone (TRZ), and top heat exchange zone (THZ), and a mathematical model of nitrogen free blast furnace (NF-BF) is established. The optimum process parameters of two kinds of nitrogen free blast furnaces are calculated by the new mathematical model. The results show that for the nitrogen free blast furnace with a single row of tuyeres, the optimum process parameters are coke ratio of 220 kg/t, coal ratio of 193 kg/t, and volume of recycling top gas of 577 m3/t; for two rows of tuyeres, the process parameters are coke ratio of 202 kg/t, coal ratio of 211 kg/t, volume of recycling top gas in upper area of 296 m3/t, and volume of recycling top gas in lower area of 295 m3/t. Energy balances are reached in diferent regions. Theoretical combustion temperature (TCT) in raceway zone is largely afected by diferent processes, and a lower TCT should be adopted for the single row of tuyeres, but for two rows of tuyeres, a higher TCT should be maintained Compared with traditional blast furnace, in NF-BF, the emission of CO2 would be reduced by 45.91% and 49.02% for a single row of tuyeres and two rows of tuyeres, respectively, and combined with CO2 sequestration technology, zero emission of CO2 could be realized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Zhang, The Applied and Fundamental Research on Nitrogen Free Blast Furnace, University of Science and Technology Beijing, Beijing, 2001.

    Google Scholar 

  2. Y. H. Han, J. S. Wang, Y. Z. Li, X. F. She, L. T. Kong, Q. G. Xue, J. Univ. Sci. Tech. Beijing 33 (2011) 1280–1286.

    Google Scholar 

  3. K. Afanga, O. Mirgaux, F. Patisson, in: Carbon Management Technology Conference, Curran Associates, Inc., Orlando, Florida, USA, 7–9 February 2012, pp. 333–341.

    Google Scholar 

  4. G. Danloy, A. Berthelemot, M. Grant, J. Borlée, D. Sert, J van der Stel, H. Jak, V. Dimastromateo, M. Halin, N. Eklund, N. Edberg, L. Sundqvist, B. E. Sköld, R. Lin, A. Feiterna, B. Korthas, F. Müler, C. Feilmayr, A. Habermann, Rev Metall. 106 (2009) 1–8.

    Article  Google Scholar 

  5. M. S. Qin, Z. K. Gao, G. L. Wang, Iron and Steel 22 (1987) No. 12, 1–7.

    Google Scholar 

  6. Mark Aronovitch Tseitlin, Serge Evgeny Lazutkin, Gennady Michil Styopin, ISIJ Int. 34 (1994) 570–573.

    Article  Google Scholar 

  7. M. S. Qin, B. M. Qi, in: Proceedings of the Sixth International Iron and Steel Congress, ISIJ, Nagoya, 1990, pp. 589–595.

    Google Scholar 

  8. X. L. Wang, Ferrous Metalurgy (Ironmaking), Metalurgical Industry Press, Beijing, 2006.

    Google Scholar 

  9. A. H. Pamm, Calculation and Analysis of Modern Blast Furnace, X. L. Wang, Trans., Metalurgical Industry Press, Beijing, 1987.

  10. S. R. Na, Journal of Baotou University of Iron and Steel Technology 20 (2001) No. 3, 227–231.

    Google Scholar 

  11. S. R. Zhang, X. G. Bi, Iron and Steel 39 (2004) No 2, 8–13.

    Google Scholar 

  12. H. Xu, Z. S. Zou, Ironmaking 27 (2008) No. 2, 54–55.

    MathSciNet  Google Scholar 

  13. S. L. Wu, H. Chen, X. B. Yu, J. Xu, X. L. Wang, Iron and Steel 43 (2008) No. 9, 16–19.

    Google Scholar 

  14. G. W. Wang, J. L. Zhang, B. X. Su, J. G. Shao, J. Y. Qiu, Iron and Steel 47 (2012) No. 4, 9–13.

    Google Scholar 

  15. Z. Y. Xiang, Ironmaking 26 (2007) No. 4, 1–4.

    MathSciNet  Google Scholar 

  16. Z. Y. Xiang, X. L. Wang, Blast Furnace Design-Theory and Practice of Ironmaking Process Design, Metalurgical Industry Press, Beijing, 2007.

    Google Scholar 

  17. W. X. Wang, Ironmaking 30 (2011) No. 2, 9.

    Google Scholar 

  18. L. B. Cheng, Calculation and Process of Ironmaking for Blast Furnace, Metalurgical Industry Press, Beijing, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-liang Zhang.

Additional information

Foundation Item: Item Sponsored by National Basic Research Program of China (2012CB720401); National Key Technology Research and Development Program in 12th FiveGyear Plan of China (2011BAC01B02); National Natural Science Foundation of China and Baosteel (51134008)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Jl., Wang, Gw., Shao, Jg. et al. Comprehensive Mathematical Model and Optimum Process Parameters of Nitrogen Free Blast Furnace. J. Iron Steel Res. Int. 21, 151–158 (2014). https://doi.org/10.1016/S1006-706X(14)60024-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(14)60024-8

Keywords

Navigation