Skip to main content
Log in

Effect of Carbon Content on Stacking Fault Energy of Fe-20Mn-3Cu TWIP Steel

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The influence of carbon content on the stacking fault energy (SFE) of Fe-20Mn-3Cu twinning-induced plasticity (TWIP) steel was investigated by means of X-ray diffraction peak-shift method and thermodynamic modeling. The experimental result indicated that the stacking fault probability decreases with increasing carbon addition, the SFE increases linearly when the carbon content in mass percent is between 0. 23% and 1. 41%. The thermodynamic calculation results showed that the SFE varied from 22. 40 to 29. 64 mJ • m−2 when the carbon content in mass percent changes from 0. 23% to 1. 41%. The XRD analysis revealed that all steels were fully austenitic before and after deformation, which suggested that TWIP effect is the predominant mechanism during the tensile deformation process of Fe-20Mn-3Cu-XC steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Grässel, L. Krüger, G. Frommeyer L. W. Meyer, Int. J. Plast. 16 (2000) 1391–1409.

    Article  Google Scholar 

  2. G. Frommeyer, U. Brüx, P. Neumann, ISIJ Int. 43 (2003) 438–446.

    Article  Google Scholar 

  3. S. Vercammen, B. Blanpain, B. C. De Cooman, P. Wollants, Acta Mater. 52 (2004) 2005–2012.

    Article  Google Scholar 

  4. J. Kim, S. J. Lee, B. C. De Cooman, Scripta Mater. 65 (2011) 363–366.

    Article  Google Scholar 

  5. B. W. Oh, S. J. Cho, Y. G. Kim, Y. P. Kim, W. S. Kim, S. H. Hong, Mater. Sci. Eng. A 197 (1995) 147–156.

    Article  Google Scholar 

  6. L. Remy, A. Pineau, Mater. Sci. Eng. 28 (1977) 99–107.

    Article  Google Scholar 

  7. Y. J. Dai, D. Tang, Z. L. Mi, J. C. Lü, J. Iron Steel Res. Int. 17 (2010) No. 9, 53–59.

    Article  Google Scholar 

  8. I. Gutierrez-Urrutia, D. Raabe, Acta Mater. 59 (2011) 6449–6462.

    Article  Google Scholar 

  9. M. Koyama, E. Akiyama, K. Tsuzaki, Corros. Sci. 54 (2012) 1–4.

    Article  Google Scholar 

  10. R. E. Schramm, R. P. Reed, Metall. Mater. Trans. A 6 (1975) 1345–1351.

    Article  Google Scholar 

  11. P.J. Brofman, G. S. Ariseli, Metall. Mater. Trans. A 9 (1978) 879–880.

    Article  Google Scholar 

  12. Y. N. Petrov, Scripta Metall. Mater. 29 (1993) 1471–1476.

    Article  Google Scholar 

  13. A. Abbasi, A. Dick, T. Hickel, J. Neugebauer, Acta Mater. 59 (2011) 3041–3048.

    Article  Google Scholar 

  14. Y. H. Rong, G. He, Z. H. Guo, S. P. Chen, T. Y. Hsu, J. Mater. Sci. Technol. 18 (2002) 459–461.

    Google Scholar 

  15. S. Curtze, V. T. Kuokkala, Acta Mater. 58 (2010) 5129–5141.

    Article  Google Scholar 

  16. S. Curtze, V. T. Kuokkala, A. Oikari, J. Talonen, H. Hanninen, Acta Mater. 59 (2011) 1068–1076.

    Article  Google Scholar 

  17. G. B. Olson, M. Cohen, Metall. Trans. A 7 (1976) 1897–1904.

    Google Scholar 

  18. B. E. Warren, X-Ray Diffraction, Addison-Wesley, Massachusett, 1969.

    Google Scholar 

  19. J. P. Hirth, Metall. Mater. Trans. B 1 (1970) 2367–2374.

    Google Scholar 

  20. A. Dumay, J. P. Chateau, S. Allain, S. Migot, O. Bouaziz, Mater. Sci. Eng. A 483–484 (2008) 184–187.

    Article  Google Scholar 

  21. S. Allain, J. P. Chateau, O. Bouaziz, S. Migot, N. Guelton, Mater. Sci. Eng. A 387–389 (2004) 158–162.

    Article  Google Scholar 

  22. M. Hillert, M. Jarl, Calphad 2 (1978) 227–238.

    Article  Google Scholar 

  23. L. Lin, T. Y. Hsu, Calphad 21 (1997) 443–448.

    Article  Google Scholar 

  24. S. Cotes, M. Sade, A. Fernandez Guillermet, Metall. Mater. Trans. A 26 (1995) 1957–1969.

    Article  Google Scholar 

  25. Y. J. Dai, Z. L. Mi, D. Tang, J. C. Lü, J. Iron Steel Res. 23 (2011) No. 4, 32–36.

    Google Scholar 

  26. W. Huang, Calphad 13 (1989) 231–242.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian Peng.

Additional information

Foundation Item: Item Sponsored by Industry-University Cooperation Major Program of Science and Technology Department of Fujian Province of China (2011H6012); Key Program of Science and Technology Department of Fujian Province of China (2011H0001)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, X., Zhu, Dy., Hu, Zm. et al. Effect of Carbon Content on Stacking Fault Energy of Fe-20Mn-3Cu TWIP Steel. J. Iron Steel Res. Int. 21, 116–120 (2014). https://doi.org/10.1016/S1006-706X(14)60018-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(14)60018-2

Key words

Navigation