Skip to main content
Log in

Measuring and Modeling of Density for Selected CaO-MgO-Al2O3-SiO2 Slag With Low Silica

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The densities of the selected quaternary CaO-MgO-Al2O3-SiO2 slag with low silica were measured by the Archimedean method in a wide temperature range from 1 773 to 1 873 K. Nine different slag compositions were chosen based on three different levels of CaO content and three different levels of SiO2 content. wMgO was equal to 7. 0%. wCaO were varied from 40. 04% to 50. 64%, for wSiO2 = 10. 25%–20. 70%. The effects of temperature, SiO2 content and optical basicity were studied. It is shown that density decreases approximately linearly with an increase in temperature. Under the same CaO content, the density decreases with increasing of SiO2 content, and increases with optical basicity increasing. Based on the experimental data as the boundary of the homogenous phase region predicated by FACTSAGE software, the mass triangle model is used to calculate the density of selected limited homogenous phase region. The results showed that the mass triangle model works well. Key words: density; slag; low silica; optical basicity; model

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Winterhager H, Greiner L, Kammel R. Investigations of the Density and Electrical Conductivity of Melts in the System CaO-Al2O3-SiO2 and CaO-MgO-Al2O3-SiO2 [M]. Cologne: Westdeutscher Verlag, 1966.

    Google Scholar 

  2. Barett L R, Thomas A G. Surface Tension and Density Measurements on Molten Glass in the CaO-Al2O3-SiO2 System [J]. J Glass Technol, 1959, 43: 179.

    Google Scholar 

  3. Courtial P, Dingwell D B. Nonlinear Composition Dependence of Molar Volume of Melts in the CaO-Al2O3-SiO2 System [J]. Geochimica et Cosmochimica Acta, 1995, 59(18): 3685.

    Article  Google Scholar 

  4. Courtial P, Dingwell D B. Densities of Melts in the CaO-MgO-Al2O3-SiO2 System [J]. Amer Mineral, 1999, 84(4): 465.

    Article  Google Scholar 

  5. Lee Y E, Gaskell D R. The Densities and Structures of Melts in the System CaO-FeO-SiO2 [J]. Metall Mater Trans, 1974, 5B(4): 853.

    Article  Google Scholar 

  6. Muhmood L, Seetharaman S. Density Measurements of Low Silica CaO-SiO2-Al2O3 Slags [J]. Metall Mater Trans, 2010, 41B(4): 833.

    Article  Google Scholar 

  7. XU Ji-fang, ZHANG Jie-yu, JIE Chang, et al. Experimental Measurements and Modeling of Viscosity in the CaO-Al2O3-MgO Slag System [J]. Ironmaking and Steelmaking, 2011, 38(5): 329.

    Article  Google Scholar 

  8. Toulokian Y S, Kirby R K, Taylor R E. Thermophysical Properties of Matter [M]. New York: Plenum, 1997.

    Google Scholar 

  9. Persson M, Zhang J, Seetharaman S. A Thermodynamic Approach to a Density Model for Oxide Melts [J]. Steel Res Int, 2007, 78(4): 290.

    Article  Google Scholar 

  10. ZHANG Guo-hua, CHOU Kuo-chih. Model for Evaluating Density of Molten Slag With Optical Basicity [J]. Journal of Iron and Steel Research International, 2010, 17(4): 18.

    Article  Google Scholar 

  11. Lide D R. CRC Handbook of Chemistry and Physics [M]. 84th ed. Boca: CRC Press, 2003.

    Google Scholar 

  12. Mills K C. The Influence of Structure on the Physico-Chemical Properties of Slags [J]. ISIJ Int, 1993, 33(1): 148.

    Article  MathSciNet  Google Scholar 

  13. CUI Chuan-meng, XU Xiu-guang, ZHANG Xian-ping, et al. Effect of Composition of B2O3-MgO-SiO2-Al2O3-CaO Slag System on Physical Properties of Melt [J]. Acta Metallurgica Sinica, 1996, 32(6): 637 (in Chinese).

    Google Scholar 

  14. Saito N, Hori M, Nakashima K, et al. Viscosity of Blast Furnace Type Slags [J]. Metall Mater Trans, 2003, 34B(5): 509.

    Article  Google Scholar 

  15. Mills K C, Keene B J. Models to Estimate Some Properties of Slags [J]. Int Mater Rev, 1987, 32(1): 1.

    Article  Google Scholar 

  16. CHOU Kuo-chih, CHANG Y A. A Study of Ternary Geometrical Models [J]. Ber Bunsenges Phys Chem, 1989, 93(4): 735.

    Article  Google Scholar 

  17. CHOU Kuo-chih, ZHONG Xian-mei, XU Kuang-di. Calculation of Physicochemical Properties in a Ternary System With Miscibility Gap [J]. Metall Mater Trans, 2004, 35B(4): 715.

    Article  Google Scholar 

  18. CHOU Kuo-chih, WANG Li-jun, CHEN Shuang-lin, et al. Calculation of Density in a Ternary System With a Limited Homogenous Region Using a Geometric Model [J]. Calphad, 2005, 29(2); 149.

    Article  Google Scholar 

  19. WANG Li-jun. Experimental and Modeling Studies of the Thermophysical and Thermochemical Properties of Some Slag Systems [D]. Sweden: Royal Institute of Technology, 2009.

    Google Scholar 

  20. Bale C W, Chartrand P, Degterov S A, et al. FactSage Thermochemical Software and Databases [J]. Calphad, 2002, 26(2): 189.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-fang Xu.

Additional information

Foundation Item: Item Sponsored by National Natural Science Foundation of China (50874072); Program for Changjiang Scholars and Innovative Research Team in University of China (IRT0739)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Jf., Zhang, Jy., Jie, C. et al. Measuring and Modeling of Density for Selected CaO-MgO-Al2O3-SiO2 Slag With Low Silica. J. Iron Steel Res. Int. 19, 26–32 (2012). https://doi.org/10.1016/S1006-706X(12)60109-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(12)60109-5

Keywords

Navigation