Skip to main content
Log in

Strengthening Mechanism of a New 700 MPa Hot Rolled High Strength Steel

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The microstructural evolution in a 700 MPa hot rolled high strength steel was analyzed in terms of strengthening mechanisms. The results show that the hot rolled sheet steel has yield strength of 710 MPa with good elongation and toughness. The strength of the developed 700 MPa hot rolled high strength steel is derived from the cumulative contribution of fine grain size, dislocation hardening and precipitation hardening. The fine grain strengthening and precipitation hardening are the dominant factors responsible for such high strength, and the amount of precipitation hardening is two or four times higher than that of conventional microalloyed hot rolled sheet steels reported in the past. Good toughness is due to refinement of ferrite grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hodgson P D, Hickson M R, Gibbs R K. Ultrafine Ferrite in Low Carbon Steel [J]. Scripta Materialia, 1999, 40(10): 1179.

    Article  Google Scholar 

  2. Tanniru M, Shanmugam S, Misra R D K, et al. Microalloyed V-Nb-Ti and V Steels [J]. Materials Science and Technology, 2005, 21(2): 159.

    Article  Google Scholar 

  3. Misra R D K, Tenneti K K, Weatherly G C, et al. Microstructure and Texture of Hot-Rolled Cb-Ti and V-Cb Microalloyed Steels With Differences in Formability and Toughness [J]. Metallurgical and Materials Transactions A (Physical Metallurgy and Materials Science), 2003, 34A (10): 2341.

    Article  Google Scholar 

  4. Mesplont C, De Cooman B C, Vandeputte S. Microstructure-Properties Relationships in Complex Phase Cold Rolled High Strength Steels [J]. Iron and Steelmaker (I and SM), 2002, 29(2): 39.

    Google Scholar 

  5. Hourman T. Press Forming of High Strength Steels and Their Use for Safety Parts [J]. Revue de Metallurgie Cahiers D’Informations Techniques, 1999, 96(1): 121.

    Article  Google Scholar 

  6. Misra R D K, Hartmann J E, Boucek A J. Development of an Ultra High Strength Hot Rolled Steel [J]. Iron and Steelmaker (I and SM), 2000, 27(8): 63.

    Google Scholar 

  7. Hang C, Wang X, He X, et al. A Special TMCP Used to Develop a 800 MPaGrade HSLA Steel [J]. Journal of University of Science and Technology, 2001, 8(3): 224.

    Google Scholar 

  8. FUNAKAWA Yoshimasa, SHIOZAKI Tsuyoshi, TOMITA Kunikazu, et al. Development of High Strength Hot-Rolled Sheet Steel Consisting of Ferrite and Nanometer-Sized Carbides [J]. ISIJ International, 2004, 44(11): 1945.

    Article  Google Scholar 

  9. Lgor Y Pyshmintsev, Christophe Mesplont, Sigrid Jacobs, et al. Microstructure and Properties of Hot-Rolled High Strength Multiphase Steels for Automotive Application [J]. Steel Research, 2002, 73(9): 392.

    Article  Google Scholar 

  10. Ghosh A, Mishra B, Chatterjee S. Development of Low Carbon Microalloyed Ultra High Strength Steels [J]. Materials Science Forum, 2005, 500-501: 551.

    Article  Google Scholar 

  11. Misra R D K, Nathani H, Hartmann J E, et al. Microstructural Evolution in a New 770 MPa Hot Rolled Nb-Ti Microalloyed Steel [J]. Materials Science and Engineering A, 2005, 394(1-2): 339.

    Article  Google Scholar 

  12. Nakata Naoki, Militzer Matthias. Modelling of Microstructure Evolution During Hot Rolling of a 780 MPa High Strength Steel [J]: ISIJ International, 2005, 45(1): 82.

    Article  Google Scholar 

  13. Kawabata Tomoya, Arimochi Kazushige, Toyoda Masao. Investigation on Enhancement of Property of Ductile Crack Initiation in 780 MPa Class High Tensile Strength Steel Plate [J]. Quarterly Journal of the Japan Welding Society, 2005, 23(2): 319.

    Article  Google Scholar 

  14. Ghosh A, Das Samar, Chatterjee S. Ultrahigh Strength Hot Rolled Microalloyed Steel: Microstructure and Properties [J]. Materials Science and Technology, 2005, 21(3): 325.

    Article  Google Scholar 

  15. Priestner, Li R, Zhou P H, et al. Microalloy Precipitation in HSLA Steel [J]. Microstructural Science, 1998, 26: 447.

    Google Scholar 

  16. Klinkenberg Christian, Hulka Klaus, Bleck Wolfgang. Niobium Carbide Precipitation in Microalloyed Steel [J]. Steel Research International, 2004, 75(11): 744.

    Article  Google Scholar 

  17. Cancio Maria Jose, Echaniz Guillermo, Perez Teresa Estela. Characterisation of Microalloy Precipitates in the Austenitic Range of High Strength Low Alloy Steels [J]. Steel Research, 2002, 73(8): 340.

    Article  Google Scholar 

  18. Charleux M, Poole W J, Militzer M, et al. Precipitation Behavior and Its Effect on Strengthening of an HSLA-Nb/Ti Steel [J]. Metallurgical and Materials Transactions A, 2001, 32(7): 1635.

    Article  Google Scholar 

  19. Hunderi, Nes O E, Ryum N. On the Zener Drag-Addendum [J]. Acta Metallurgica, 1989, 37(1): 129.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-long Yi.

Additional information

Foundation Item: Item Sponsored by High Technology Developnient Program of China (863) (2001AA332020) and Project of National Natural Science Foundation of China (50271015)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, Hl., Du, Lx., Wang, Gd. et al. Strengthening Mechanism of a New 700 MPa Hot Rolled High Strength Steel. J. Iron Steel Res. Int. 15, 76–80 (2008). https://doi.org/10.1016/S1006-706X(08)60036-9

Download citation

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(08)60036-9

Key words

Navigation