Skip to main content
Log in

Progress in Modeling of Phase Transformation Kinetics

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Several methods representing the evolution of microstructure were introduced, which include the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation, Internal State Variable (ISV) framework, Koistinen-Marburger (K-M) equation, modified Magee’s rule and phase field model, etc. By combining calculation of martensite transformation kinetics, considering the selection of parameters with the effect of austenite grain size ( AGS), some suitable ways of obtaining better results have been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Inoue Tatsuo, Funatani Kiyoshi, Totten George E. Process Modeling for Heat Treatment: Current Status and Future Developments [J]. Journal of Shanghai Jiao Tong University, 2000, E(5), 14–25.

    Google Scholar 

  2. Jou Herng-Jeng, Lusk Mark T. Comparison of Johnson-Mehl-Avrami-Kologoromov Kinetics With a Phase-Field Model for Microstructural Evolution Driven by Substructure Energy [J]. Physical Review B, 1997, 55(13): 8114–8121.

    Article  Google Scholar 

  3. Robson J D, Bhadeshia H K D H. Modelling Precipitation Sequences in Power Plant Steels: Part I, Kinetic Theory [J]. Materials Science and Technology, 1997, 13: 631–639.

    Article  Google Scholar 

  4. Lee Chan-Woo, Uhm Sang-Ho, Kim Kyoung-Min, et al. Modeling of Phase Transformation Kinetics in the Coarsened Grain HAZ of C-Mn Steel Weld Considering Prior Austenite Grain Size [J]. ISIJ International, 2001, 41(11): 1383–1388.

    Article  Google Scholar 

  5. LIU Zhuang, ZENG Pan. Development of Thermal Process and Numerical Modeling [J]. Journal of Shanghai Jiao Tong University, 2000, E(5): 42–48.

    Google Scholar 

  6. Gottstein Guenter, Marx V, Sebald R. Integral Recrystallization Modelling [J]. Journal of Shanghai Jiao Tong University, 2000, E(5): 49–57.

    Google Scholar 

  7. Jones S J, Bhadeshia H K D H. Kinetics of the Simultaneous Decomposition of Austenite Into Several Transformation Products [J]. Acta Materialia, 1997, 45(7): 2911–2920.

    Article  Google Scholar 

  8. XU Zu-yao. Phase Transformation Theory [M]. Beijing: Science Press, 2000 (in Chinese).

    Google Scholar 

  9. GAO Ning. Study on Coupled Modeling of Quenching Process and 3-Dimensional Numerical Simulation [D]. Beijing: Tsing-hua University, 2000 (in Chinese).

    Google Scholar 

  10. Mittemeijer E J, Van Gent A, Van Der Schaaf P J. Analysis of Transformation Kinetics by Ninisothermal Dilatometry [J]. Metallurgical Transactions, 1986, 17A: 1441–1445.

    Article  Google Scholar 

  11. Valencia Morales E, Vega L J, Villar C E, et al. Some Comments About the Errors in the Avrami Plots [J]. Scripta Materialia, 2005, 52: 217–219.

    Article  Google Scholar 

  12. Gómez M, Medina S F, Caruana G. Modelling of Phase Transformation Kinetics by Correction of Dilatometry Results for a Ferritic Nb-Microalloyed Steel [J]. ISIJ International, 2003, 43(8): 1228–1237.

    Article  Google Scholar 

  13. Elwazri A M, Essadiqi E, Yue S. The Kinetics of Static Re-crystallization in Microalloyed Hypereutectoid Steels [J]. ISIJ International, 2004, 44 (1): 162–170.

    Article  Google Scholar 

  14. Schroder R. Influences on Development of Thermal and Residual Stresses in Quenched Steel Cylinders of Different Dimensions [J]. Materials Science and Technology, 1985, 1(10): 754–764.

    Article  Google Scholar 

  15. LUO Haiwen, Sietsma Jilt, Van Der Zwaag Sybrand. Effect of Inhomogeneous Deformation on the Recrystallization Kinetics of Deformed Metals [J]. ISIJ International, 2004, 44 (11): 1931–1936.

    Article  Google Scholar 

  16. Hawbolt E B, Chao B, Brimacombe J K. Kinetics of Austen-ite-Ferrite and Austenite-Pearlite Transformations in a 1025 Carbon Steel [J]. Metallurgical Transactions, 1985, 16A: 565–578.

    Article  Google Scholar 

  17. Roósz A, GÁcsi Z, Fuchs E G. Isothermal Formation of Austenite in Eutectoid Plain Carbon Steel [J]. Acta Metallurgica, 1983, 31(4): 509–517.

    Article  Google Scholar 

  18. Todinov M T. On Some Limitations of the Johnson-Mehl-Avrami-Kolmogorov Equation [J]. Acta Metallurgica, 2000, (48): 4217–4224.

    Google Scholar 

  19. LIU Zhuang, WU Zhao-ji, WU Jing-zhi, et al. Numerical Simulation of Heat Treatment Process [M]. Beijing: Science Press, 1996 (in Chinese).

    Google Scholar 

  20. Lee Jye-long, Bhadeshia H K D H. A Methodology for the Prediction of Time-Temperature-Transformation Diagrams [J]. Materials Science and Engineering, 1993, A171: 223–230.

    Article  Google Scholar 

  21. Lusk Mark T, Lee Young-Kook, Jou Herng-Jeng, et al. An Internal State Variable Model for the Low Temperature Tempering of Low Alloy Steels [J]. Journal of Shanghai Jiao Tong University, 2000, E(5): 178–184.

    Google Scholar 

  22. Vincent Y, Jullien Jean-Francois, Fouquet F, et al. Weld Models Incorporating the HAZ Phase Transformation Effects, Comparison Between Experimental and Numerical Results [J]. Journal of Shanghai Jiao Tong University, 2000, E(5): 107–113.

    Google Scholar 

  23. Kundu Saurabh, Mukhopashyay Ananya, Chatterjee Sudin, et al. Modelling of Microstructure and Heat Transfer During Controlled Cooling of Low Carbon Wire Rod [J]. ISIJ International, 2004, 44(7): 1217–1223.

    Article  Google Scholar 

  24. Lee Seok-jae, Lee Young-kook. Effect of Austenite Grain Size on Martensitic Transformation of Low Alloy Steel [A]. Proceedings of the 5th Pacific Rim International Conference on Advanced Materials and Processing [C]. Beijing: The Chinese Society for Metals, 2004. 3169–3172.

    Google Scholar 

  25. JU Dong-Ying, Narazaki Michiharu, Kamisugi Hirofumi, et al. Computer Predictions and Experimental Verification of Residual Stresses and Distortion in Carburizing-Quenching of Steel [J]. Journal of Shanghai Jiao Tong University, 2000, E(5): 165–172.

    Google Scholar 

  26. Pariser Gerhard, Schaffnit Philippe, Steinbach Ingo, et al. Simulation of the γ-α Transformation Using the Phase-Field Method [J]. Steel Research, 2001, 72(9), 354–360.

    Article  Google Scholar 

  27. LIU Chun-cheng, JU Dong-ying, Inoue Tatsuo. A Numerical Modeling of Metallo-Thermo-Mechanical Behavior in Both Carburized and Carbonitrided Quenching Processes [J]. ISIJ International, 2002, 42(10): 1125–1134.

    Article  Google Scholar 

  28. Lusk Mark T, Jou Herng-Jeng. On the Rule of Additivity in Phase Transformation Kinetics [J]. Metallurgical and Materials Transactions, 1997, 28A: 287–291.

    Article  Google Scholar 

  29. Tszeng T C. Autocatalysis in Bainite Transformation [J]. Materials Science and Engineering, 2000, A293: 185–190.

    Article  Google Scholar 

  30. Caballero F G, Capdevila C, Garcia de Andres C. Influence of Pearlite Morphology and Heating Rate on the Kinetics of Continuously Heated Austenite Formation in a Eutectoid Steel [J]. Metallurgical and Materials Transactions, 2001, 32A: 1283–1291.

    Article  Google Scholar 

  31. Capdevila C, Caballero F G, Garcia de Andres C. Modeling of Kinetics of Austenite-to-Allotriomorphic Ferrite Transformation in 0. 37C1-1. 45Mn-0. 11V Microalloyed Steel [J]. Metallurgical and Materials Transactions, 2001, 32A: 661–669.

    Article  Google Scholar 

  32. Kasuya T, Ichikawa K, Fuji M, et al. Real and Extended Volumes in Simultaneous Transformations [J]. Materials Science and Technology, 1999, 15: 471–473.

    Article  Google Scholar 

  33. Geiger J, Roósz A, Barkóczy P. Simulation of Grain Coarsening in Two Dimensions by Cellular-Automation [J]. Acta Metallurgica, 2001, 49: 623–629.

    Google Scholar 

  34. WU W T, Tang J P, Li G. Recent Development of Process Simulation and Its Application to Manufacturing Processes [J]. Journal of Shanghai Jiao Tong University, 2000, E(5): 235–241.

    Google Scholar 

  35. Tamura I. Deformation-Induced Martensitic Transformation and Transformation-Induced Plasticity in Steels [J]. Metal Science, 1982, 16: 245–253.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-zhuang Zhao.

Additional information

Foundation Item: Item Sponsored by State High Technology Research and Development Program (863 Plan) of China (2001AA332020)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Hz., Liu, Xh. & Wang, Gd. Progress in Modeling of Phase Transformation Kinetics. J. Iron Steel Res. Int. 13, 68–73 (2006). https://doi.org/10.1016/S1006-706X(06)60064-2

Download citation

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(06)60064-2

Key words

Navigation