Skip to main content
Log in

Apparent Morphologies and Nature of Packet Martensite in High Carbon Steels

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The apparent morphologies of packet martensite in eight high carbon steels were researched by using optical microscope, scanning electron microscope, and transmission electron microscope. It was found that the apparent morphologies, substructures, and habit plane of packet martensite in high carbon steels are entirely different from that in low carbon steels the substructures of packet martensite in high carbon steels possess fully twinned structure, while the substructures of individual coarse martensite plates in these steels bear both fully and partially twinned structures. The formation reason for apparent morphologies, substructures and two habit planes (i. e, {111}r and {225}r) of high carbon martensite were discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kelly P M, Nutting J. Techniques for the Direct Examination of Metals by Transmission in the Electron Microscope [J]. J INST MET, 1958–59, 87: 385–391.

    Google Scholar 

  2. Marder A R, Krauss G. The Morphology of Martensite in Iron-Carbon Alloys [J]. ASM TRANS QUART, 1967, 60(4): 651–660.

    Google Scholar 

  3. Speich G R, Leslie W C. Tempering of Steel [J]. Metallurgical Transactions, 1972, 3(5): 1043–1049.

    Article  Google Scholar 

  4. Krauss G. Martensite in Steel; Strength and Structure [J]. Materials Science and Engineering A, 1999, 273–275: 40–57.

    Article  Google Scholar 

  5. Owen W S. High Strength Materials [M]. New York: Wiley, 1965.

    Google Scholar 

  6. Bell T, Owen W S. Martensite in Iron-Nitrogen Alloys [J]. IRON STEEL INST J, 1967, 205(4): 428–434.

    Google Scholar 

  7. Ohmura I, Hara T, Tsuzaki K. Relationship Between Nano-hardness and Microstructures in High-Purity Fe-C As-Quenched and Quench-Tempered Martensite [J]. J Mater Research, 2003, 18(6): 1465–1470.

    Article  Google Scholar 

  8. Morito S, Tanaka H, Konishi R. The Morphology and Crystallography of Lath Martensite in Fe-C Alloys [J]. Acta Mater, 2003, 51(6): 1789–1799.

    Article  Google Scholar 

  9. Morito S, Nishikawa J, Make T. Dislocation Density Within Lath Martensite in Fe-C and Fe-N Alloys [J]. ISIJ International, 2003, 43(9): 1475–1480.

    Article  Google Scholar 

  10. Furuhara T, Morito S, Mark T. Morphology, Substructure and Crystallography of Lath Martensite in Fe-C Alloy [J]. J De Physique IV, 2003, 112(Part 1): 255–260.

    Google Scholar 

  11. Borgenstam A. Some Remarks on the Nucleation and Growth of Martensite [J]. Materials Science and Engineering A, 1999, 273–275: 425–430.

    Article  Google Scholar 

  12. TAN Y H, ZENG D C, DONG X C, et al. New Observation of Martensitic Morphology and Substructure Using Transmission Electron Microscopy [J]. Metall Trans, 1992, 23A(5): 1413–1421.

    Article  Google Scholar 

  13. ZENG D C, TAN Y H, QIAO G W, et al. The Nature of Martensite Morphologies in Medium and High Carbon Steels [J]. Z Metallkd, 1994, 85(3): 203–206.

    Google Scholar 

  14. DONG X C, TAN Y H, TAN M L, et al. Effect of Austenitizing Temperature on Microstructure and Impact Behavior of Structural Steel [J]. J Iron and Steel Res Int, 2002, 9(1): 352–356.

    Google Scholar 

  15. LIU Y J, TAN M L, FAN S H, et al. Apparent Morphology of Coarse Plate Martensite [J]. ISIJ Intenational, 2004, 44(4): 725–730.

    Article  Google Scholar 

  16. Mschasitlivtsev V, Rodionov D P, Khlebnikova Y V, et al. Peculiarity of Structure and Crystallography of Plastic Deformation of Lath Martensite in Structural Steels [J]. Mater Sci Eng, 1999, A273–275, 437–442.

    Article  Google Scholar 

  17. Shtansdy D V, Nakai K, Ohmor Y. Crystallography and Structural Evolution During Reverse Transformation in an Fe-17Cr-0. 5C Tempered Martensite [J]. Acta Mater, 2000, 48(8): 1679–1689.

    Article  Google Scholar 

  18. Kelly P M, Jostsans A, Blake R G. The Orientation Relationship Between Lath Martensite and Austenite in Low Carbon Low Alloy Steels [J]. Acta Metall Mater, 1990, 38(6): 1075–1081.

    Article  Google Scholar 

  19. Marder J M, Marder A R. The Morphology of Iron-Nickel Massive Martensite [J]. ASM TRANS QUART, 1969, 62(1): 1–10.

    MathSciNet  Google Scholar 

  20. Thomas G, Rao B V N. Substructure Examination of Lath Martensite in Fe-C Alloys [A]. Proc Int Conf on Martensitic Transformation (ICOMAT 77) [C]. Kiev: Academic Press. 1978. 57–64.

    Google Scholar 

  21. Sarikaya M, Thomas G. Lath Martensites in Low Carbon Steels [J]. J De Physique, 1982, 43(12): 563–568.

    Google Scholar 

  22. LIU Yue-jun, HUANG Bo-yun, TAN Yu-hua, et al. New Space Morphology and Habit Plane of Low Carbon Martensite [J]. J Iron and Steel Res Int, 2005, 12(3): 46–50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-jun Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Yj., Li, Ym., Tan, Yh. et al. Apparent Morphologies and Nature of Packet Martensite in High Carbon Steels. J. Iron Steel Res. Int. 13, 40–46 (2006). https://doi.org/10.1016/S1006-706X(06)60059-9

Download citation

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(06)60059-9

Key words

Navigation