Skip to main content
Log in

Effect of polymer and fiber additives on pressure drop in a rectangular channel

  • Article
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

The influence of minute amounts of additives on pressure drop is an interesting fundamental phenomenon, potentially with important practical applications. Change of the pressure drop in a quasi-two-dimensional channel flow using various additives is experimentally investigated. Tests were conducted for a wide range of concentrations (100 ppm-500 ppm) and Reynolds numbers (16 000–36 000) with two polymers and four rigid fibers used as additive. Maximum drag reduction of 22% was observed for xanthan gum. However, xanthan gum loses its drag-reducing property rapidly. It was also seen that drag reduction percentage of xanthan gum remains almost constant for different Reynolds numbers. Guar flour demonstrated good drag reduction property at high Reynolds numbers. Drag reduction of 17.5% at Re = 33 200 using 300 ppm solution was observed. However, at low Reynolds numbers guar flour will cause an increase in pressure drop. Fiber fillers (aspect ratio=21) have been tested as well. In contrast to polymers, they increased the drag for the range of examined concentrations and Reynolds numbers. Polyacrylonitrile fiber with three different aspect ratios (106, 200, 400) was also used, which showed an increase in pressure drop at low aspect ratios. Polyacrylonitrile fibers of larger lengths (6 mm) demonstrated minor drag-reducing effects (up to 3%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Shao X., Lin J., Wu T. et al. Experimental research on drag reduction by polymer additives in a turbulent pipe flow [J]. Canadian Journal of Chemical Engineering, 2002, 80(2): 293–298.

    Article  Google Scholar 

  2. Edomwonyi-Otu L. C., Chinaud M., Angeli P. Effect of drag reducing polymer on horizontal liquid–liquid flows [J]. Experimental Thermal and Fluid Science, 2015, 64: 164–174.

    Article  Google Scholar 

  3. Steele A., Bayer I. S., Loth E. Pipe flow drag reduction effects from carbon nanotube additives [J]. Carbon, 2014, 77(2): 1183–1186.

    Article  Google Scholar 

  4. Shao X., Wu T., Yu Z. Fully resolved numerical simulation of particle-laden turbulent flow in a horizontal channel at a low Reynolds number [J]. Journal of Fluid Mechanics, 2012, 693: 319–344.

    Article  MathSciNet  Google Scholar 

  5. Uhlmann M. Interface-resolved direct numerical simulation of vertical particulate channel flow in the turbulent regime [J]. Physics of Fluids, 2008, 20(5): 53305.

    Google Scholar 

  6. Gyr A., Bewersdorff H.-W. Drag reduction of turbulent flows by additives [M]. Dordrecht, The Netherlands: Kluwer Academic, 1995.

    Book  Google Scholar 

  7. Toms B. A. Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers [C]. First International Congress on Rheology. Scheveningen, The Netherlands, 1948, 135–141.

    Google Scholar 

  8. Warholic M. D., Massah H., Hanratty T. J. Influence of drag-reducing polymers on turbulence: Effects of Reynolds number, concentration and mixing [J]. Experiments in Fluids, 1999, 27(5): 461–472.

    Article  Google Scholar 

  9. Ptasinski P. K., Nieuwstadt F. T. M., Van Den Brule B. et al. Experiments in turbulent pipe flow with polymer additives at maximum drag reduction [J]. Flow, Turbulence and Combustion, 2001, 66(2): 159–182.

    Article  Google Scholar 

  10. Mowla D., Naderi A. Experimental study of drag reduction by a polymeric additive in slug two-phase flow of crude oil and air in horizontal pipes [J]. Chemical Engineering Science, 2006, 61(5): 1549–1554.

    Article  Google Scholar 

  11. White C. M., Mungal M. G. Mechanics and prediction of turbulent drag reduction with polymer additives [J]. Annual Review of Fluid Mechanics, 2008, 40(1): 235–256.

    Article  MathSciNet  Google Scholar 

  12. Lumley J. L. Drag reduction by additives [J]. Annual Review of Fluid Mechanics, 1969, 1(1): 367–384.

    Article  Google Scholar 

  13. Ryskin G. Turbulent drag reduction by polymers: A quantitative theory [J]. Physical Review Letters, 1987, 59(18): 2059.

    Google Scholar 

  14. Gillissen J. J. J. Polymer flexibility and turbulent drag reduction [J]. Physical Review E Statistical Nonlinear and Soft Matter Physics, 2008, 78(4): 046311.

    Google Scholar 

  15. Tabor M., De Gennes P. G. A cascade theory of drag reduction [J]. Europhysics Letters, 1986, 2(7): 519–522.

    Article  Google Scholar 

  16. Japper-Jaafar A., Escudier M. P., Poole R. J. Turbulent pipe flow of a drag-reducing rigid “rod-like” [J]. Journal of Non-Newtonian Fluid Mechanics, 2009, 161(1-3): 86–93.

    Article  Google Scholar 

  17. Cai S. P., Higuchi Y. Drag-reduction behavior of an unusual nonionic surfactant in a circular pipe turbulent flow [J]. Journal of Hydrodynamics, 2014, 26(3): 400–405.

    Article  Google Scholar 

  18. Elbing B. R., Winkel E. S., Lay K. A. et al. Bubble-induced skin-friction drag reduction and the abrupt transition to air-layer drag reduction [J]. Journal of Fluid Mechanics, 2008, 612: 201–236.

    Article  Google Scholar 

  19. Pouranfard A. R., Mowla D., Esmaeilzadeh F. An experimental study of drag reduction by nanofluids through horizontal pipe turbulent flow of a Newtonian liquid [J]. Journal of Industrial and Engineering Chemistry, 2014, 20(2): 633–637.

    Article  Google Scholar 

  20. Radin I., Zakin J. L., Patterson G. K. Drag reduction in solid-fluid systems [J]. AIChE Journal, 1975, 21(2): 358–371.

    Article  Google Scholar 

  21. You Z. J., Lin J. Z., Shao X. M. et al. Stability and drag reduction in transient channel flow of fibre suspension [J]. Chinese Journal of Chemical Engineering, 2004, 12(3): 319–323.

    Google Scholar 

  22. Ko G. H., Heo K., Lee K. et al. An experimental study on the pressure drop of nanofluids containing carbon nano-tubes in a horizontal tube [J]. International Journal of Heat and Mass Transfer, 2007, 50(23–24): 4749–4753.

    Article  Google Scholar 

  23. Liu Z. H., Liao L. Forced convective flow and heat transfer characteristics of aqueous drag-reducing fluid with carbon nanotubes added [J]. International Journal of Thermal Sciences, 2010, 49(12): 2331–2338.

    Article  Google Scholar 

  24. Lin J. Z., Xia Y., Ku X. K. Flow and heat transfer characteristics of nanofluids containing rod-like particles in a turbulent pipe flow [J]. International Journal of Heat and Mass Transfer, 2016, 93: 57–66.

    Article  Google Scholar 

  25. Zhao F., van Wachem B. G. M. Direct numerical simulation of ellipsoidal particles in turbulent channel flow [J]. Acta Mechanica, 2013, 224(10): 2331–2358.

    Article  MathSciNet  Google Scholar 

  26. Picano F., Breugem W.-P., Brandt L. Turbulent channel flow of dense suspensions of neutrally buoyant spheres [J]. Journal of Fluid Mechanics, 2015, 764: 463–487.

    Article  MathSciNet  Google Scholar 

  27. Lin J. Z., Xia Y., Ku X. K. Pressure drop and heat transfer of nanofluid in turbulent pipe flow considering particle coagulation and breakage [J]. Journal of Heat Transfer, 2014, 136(11): 111701.

    Google Scholar 

  28. von Kármán T. Mechanische ähnlichkeit und turbulenz [C]. Proceedings of the 3rd International Congress for Applied Mechanics. Stockholm, Sweden, 1930, 85–105.

    Google Scholar 

  29. Virk P. S. Drag reduction fundamentals [J]. AIChE Journal, 1975, 21(4): 625–656.

    Article  Google Scholar 

  30. Elghobashi S. An updated classification map of particle-laden turbulent flows [C]. IUTAM Symposium on Computational Approaches to Multiphase Flow. Berlin, Germany: Springer, 2006, 3–10.

    Chapter  Google Scholar 

  31. Elghobashi S. On predicting particle-laden turbulent flows [J]. Applied Scientific Research, 1994, 52(4): 309–329.

    Article  Google Scholar 

  32. Fornari W., Formenti A., Picano F. et al. The effect of particle density in turbulent channel flow laden with finite size particles in semi-dilute conditions [J]. Physics of Fluids, 2016, 28(3): 033301.

    Google Scholar 

  33. Garcia-Ochoa F., Santos V. E., Casas J. A. et al. Xanthan gum: Production, recovery, and properties [J]. Biotechnology Advances, 2000, 18(7): 549–579.

    Article  Google Scholar 

  34. Soares E. J., Sandoval G. A. B., Silveira L. et al. Loss of efficiency of polymeric drag reducers induced by high Reynolds number flows in tubes with imposed pressure [J]. Physics of Fluids, 2015, 27(12): 125105.

    Google Scholar 

  35. Zhao F., George W. K., van Wachem B. G. M. Four-way coupled simulations of small particles in turbulent channel flow: The effects of particle shape and Stokes number [J]. Physics of Fluids, 2015, 27(8): 083301.

    Google Scholar 

  36. Shapiro M., Goldenberg M. Deposition of glass fiber particles from turbulent air flow in a pipe [J]. Journal of Aerosol Science, 1993, 24(1): 65–87.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Eshghinejadfard.

Additional information

Biography: Amir Eshghinejadfard (1983-), Male, Ph. D. Candidate

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eshghinejadfard, A., Sharma, K. & Thévenin, D. Effect of polymer and fiber additives on pressure drop in a rectangular channel. J Hydrodyn 29, 871–878 (2017). https://doi.org/10.1016/S1001-6058(16)60799-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(16)60799-0

Key words

Navigation