Skip to main content
Log in

A 3-D SPH model for simulating water flooding of a damaged floating structure

  • Article
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

With the quasi-static analysis method, the terminal floating state of a damaged ship is usually evaluated for the risk assessment. But this is not enough since the ship has the possibility to lose its stability during the transient flooding process. Therefore, an enhanced smoothed particle hydrodynamics (SPH) model is applied in this paper to investigate the response of a simplified cabin model under the condition of the transient water flooding. The enhanced SPH model is presented firstly including the governing equations, the diffusive terms, the boundary implementations and then an algorithm regarding the coupling motions of six degrees of freedom (6-DOF) between the structure and the fluid is described. In the numerical results, a non-damaged cabin floating under the rest condition is simulated. It is shown that a stable floating state can be reached and maintained by using the present SPH scheme. After that, three-dimensional (3-D) test cases of the damaged cabin with a hole at different locations are simulated. A series of model tests are also carried out for the validation. Fairly good agreements are achieved between the numerical results and the experimental data. Relevant conclusions are drawn with respect to the mechanism of the responses of the damaged cabin model under water flooding conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Manderbacka T., Ruponen P., Kulovesi J. et al. Model experiments of the transient response to flooding of the box shaped barge [J]. Journal of Fluids and Structures, 2015, 57: 127–143.

    Article  Google Scholar 

  2. Zhang A. M., Liu Y. L. Improved three-dimensional bubble dynamics model based on boundary element method [J]. Journal of Computational Physics, 2015, 294: 208–223.

    Article  MathSciNet  Google Scholar 

  3. Klaseboer E., Hung K., Wang C. et al. Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure [J]. Journal of Fluid Mechanics, 2005, 537: 387–413.

    Article  Google Scholar 

  4. Zhang A. M., Cui P., Cui J. et al. Experimental study on bubble dynamics subject to buoyancy [J]. Journal of Fluid Mechanics, 2015, 776: 137–160.

    Article  Google Scholar 

  5. Zhang A. M., Li S., Cui J. Study on splitting of a toroidal bubble near a rigid boundary [J]. Physics of Fluids, 2015, 27(6): 062102.

    Google Scholar 

  6. Zhang A. M., Zeng L. Y., Wang S. P. et al, The evaluation method of total damage to ship in underwater explosion [J]. Applied Ocean Research, 2011, 33(4): 240–251.

    Article  Google Scholar 

  7. Rajendran R., Narasimhan K. Deformation and fracture behaviour of plate specimens subjected to underwater explosion-A review [J]. International Journal of Impact Engineering, 2006, 32(12): 1945–1963.

    Article  Google Scholar 

  8. Zhang A., Zhou W., Wang S. et al. Dynamic response of the non-contact underwater explosions on naval equipment [J]. Marine Structures, 2011, 24(4): 396–411.

    Article  Google Scholar 

  9. Zhang A. M., Yang W. S., Huang C. et al. Numerical simulation of column charge underwater explosion based on SPH and BEM combination [J]. Computers and fluids, 2013, 71(3): 169–178.

    Article  MathSciNet  Google Scholar 

  10. Ramajeyathilagam K., Vendhan C. Deformation and rupture of thin rectangular plates subjected to underwater shock [J]. International Journal of Impact Engineering, 2004, 30(6): 699–719.

    Article  Google Scholar 

  11. Zhang A. M., Yang W. S., Yao X. L. Numerical simulation of underwater contact explosion [J]. Applied Ocean Research, 2012, 34: 10–20.

    Article  Google Scholar 

  12. Manderbacka T., Mikkola T., Ruponen P. et al. Transient response of a ship to an abrupt flooding accounting for the momentum flux [J]. Journal of Fluids and Structures, 2015, 57: 108–126.

    Article  Google Scholar 

  13. Zhang A. M., Cao X. Y., Ming F. R. et al. Investigation on a damaged ship model sinking into water based on three dimensional SPH method [J]. Applied Ocean Research, 2013, 42: 24–31.

    Article  Google Scholar 

  14. Santos T., Winkle I., Soares C. G. Time domain modelling of the transient asymmetric flooding of Ro-Ro ships [J]. Ocean Engineering, 2002, 29(6): 667–688.

    Article  Google Scholar 

  15. Begovic E., Mortola G., Incecik A. et al. Experimental assessment of intact and damaged ship motions in head, beam and quartering seas [J]. Ocean Engineering, 2013, 72: 209–226.

    Article  Google Scholar 

  16. Ruponen P., Kurvinen P., Saisto I. et al. Air compression in a flooded tank of a damaged ship [J]. Ocean Engineering, 2013, 57: 64–71.

    Article  Google Scholar 

  17. Gao Z., Gao Q., Vassalos D. Numerical simulation of flooding of a damaged ship [J]. Ocean Engineering, 2011, 38(14): 1649–1662.

    Article  Google Scholar 

  18. Monaghan J. J. Smoothed particle hydrodynamics [J]. Reports on Progress in Physics, 2005, 68(8): 1703–1759.

    Article  MathSciNet  Google Scholar 

  19. Sun P., Colagrossi A., Marrone S. et al. The dplus-SPH model: Simple procedures for a further improvement of the SPH scheme [J]. Computer Methods in Applied Mechanics and Engineering, 2017, 315: 25–49.

    Article  MathSciNet  Google Scholar 

  20. Sun P. N., Colagrossi A., Marrone S. et al. Detection of Lagrangian coherent structures in the SPH framework [J]. Computer Methods in Applied Mechanics and Engineering, 2016, 305: 849–868.

    Article  MathSciNet  Google Scholar 

  21. Xu R., Stansby P., Laurence D. Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach [J]. Journal of Computational Physics, 2009, 228(18): 6703–6725.

    Article  MathSciNet  Google Scholar 

  22. Zhang A. M., Sun P. N., Ming F. R. et al. Smoothed particle hydrodynamics and its applications in fluid-structure interactions [J]. Journal of Hydrodynamics, 2017, 29(2): 187–216.

    Article  Google Scholar 

  23. Colagrossi A., Landrini M. Numerical simulation of inter-facial flows by smoothed particle hydrodynamics [J]. Journal of Computational Physics, 2003, 191(2): 448–475.

    Article  Google Scholar 

  24. Ming F. R., Zhang A. M., Xue Y. Z. et al. Damage characteristics of ship structures subjected to shockwaves of underwater contact explosions [J]. Ocean Engineering, 2016, 117: 359–382.

    Article  Google Scholar 

  25. Le Touzé D., Marsh A., Oger G. et al. SPH simulation of green water and ship flooding scenarios [J]. Journal of Hydrodynamics, 2010, 22(5): 231–236.

    Article  Google Scholar 

  26. Bouscasse B., Colagrossi A., Marrone S. et al. Nonlinear water wave interaction with floating bodies in SPH [J]. Journal of Fluids and Structures, 2013, 42: 112–129.

    Article  Google Scholar 

  27. Serván-Camas B., Cercós-Pita J., Colom-Cobb J. et al. Time domain simulation of coupled sloshing–seakeeping problems by SPH–FEM coupling [J]. Ocean Engineering, 2016, 123: 383–396.

    Article  Google Scholar 

  28. Cercos-Pita J. L., Bulian G., Pérez-Rojas L. et al. Coupled simulation of nonlinear ship motions and a free surface tank [J]. Ocean Engineering, 2016, 120: 281–288.

    Article  Google Scholar 

  29. Antuono M., Colagrossi A., Marrone S. et al. Free-surface flows solved by means of SPH schemes with numerical diffusive terms [J]. Computer Physics Communications, 2010, 181(3): 532–549.

    Article  MathSciNet  Google Scholar 

  30. Antuono M., Colagrossi A., Marrone S. Numerical diffusive terms in weakly-compressible SPH schemes [J], Computer Physics Communications, 2012, 183(12): 2570–2580.

    Article  MathSciNet  Google Scholar 

  31. Molteni D., Colagrossi A. A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH [J]. Computer Physics Communications, 2009, 180(6): 861–872.

    Article  MathSciNet  Google Scholar 

  32. Cercos-Pita J., Dalrymple R., Herault A. Diffusive terms for the conservation of mass equation in SPH [J]. Applied Mathematical Modelling, 2016, 40(19): 8722–8736.

    Article  MathSciNet  Google Scholar 

  33. De Leffe M., Le Touzé D., Alessandrini B. Normal flux method at the boundary for SPH [C]. 4th ERCOFTAC SPHERIC Workshop. Nantes, France, 2009.

    Google Scholar 

  34. Marrone S., Bouscasse B., Colagrossi A. et al. Study of ship wave breaking patterns using 3D parallel SPH simulations [J]. Computers and fluids, 2012, 69(4): 54–66.

    Article  MathSciNet  Google Scholar 

  35. Ferrand M., Laurence D., Rogers B. et al. Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method [J]. International Journal for Numerical Methods in Fluids, 2013, 71(4): 446–472.

    Article  MathSciNet  Google Scholar 

  36. Marrone S., Antuono M., Colagrossi A. et al., d-SPH model for simulating violent impact flows [J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(13): 1526–1542.

    Article  MathSciNet  Google Scholar 

  37. Liu M. B., Shao J. R., Chang J. Z. On the treatment of solid boundary in smoothed particle hydrodynamics [J]. Science China Technological Sciences, 2012, 55(1): 244–254.

    Article  Google Scholar 

  38. Adami S., Hu X., Adams N. A generalized wall boundary condition for smoothed particle hydrodynamics [J]. Journal of Computational Physics, 2012, 231(21): 7057–7075.

    Article  MathSciNet  Google Scholar 

  39. Sun P., Ming F., Zhang A. Numerical simulation of interactions between free surface and rigid body using a robust SPH method [J]. Ocean Engineering, 2015, 98: 32–49.

    Article  Google Scholar 

  40. Liu M., Liu G. Smoothed particle hydrodynamics (SPH): An overview and recent developments [J]. Archives of computational Methods in Engineering, 2010, 17(1): 25–76.

    Article  MathSciNet  Google Scholar 

  41. Colagrossi A., Antuono M., Le Touzé D. Theoretical considerations on the free-surface role in the smoothed-particle-hydrodynamics model [J]. Physical Review E, 2009, 79(5): 056701.

    Google Scholar 

  42. Dehnen W., Aly H. Improving convergence in smoothed particle hydrodynamics simulations without pairing instability [J]. Monthly Notices of the Royal Astronomical Society, 2012, 425(2): 1068–1082.

    Article  Google Scholar 

  43. Colagrossi A., Souto-Iglesias A., Antuono M. et al. Smoothed-particle-hydrodynamics modeling of dissipation mechanisms in gravity waves [J]. Physical Review E, 2013, 87(2): 023302.

    Google Scholar 

  44. Morris J. P., Fox P. J., Zhu Y. Modeling low Reynolds number incompressible flows using SPH [J]. Journal of Computational Physics, 1997, 136(1): 214–226.

    Article  Google Scholar 

  45. Monaghan J., Gingold R. Shock simulation by the particle method SPH [J]. Journal of Computational Physics, 1983, 52(2): 374–389.

    Article  Google Scholar 

  46. Colagrossi A., Antuono M., Souto-Iglesias A. et al. Theoretical analysis and numerical verification of the consistency of viscous smoothed-particle-hydrodynamics formulations in simulating free-surface flows [J]. Physical Review E, 2011, 84(2): 026705.

    Google Scholar 

  47. Randles P., Libersky L. Smoothed particle hydrodynamics: Some recent improvements and applications [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1–4): 375–408.

    Article  MathSciNet  Google Scholar 

  48. Cercos-Pita J. L. AQUAgpusph, a new free 3D SPH solver accelerated with OpenCL [J]. Computer Physics Communications, 2015, 192: 295–312.

    Article  MathSciNet  Google Scholar 

  49. Liu M. B., Li S. M. On the modeling of viscous incompressible flows with smoothed particle hydro-dynamics [J]. Journal of Hydrodynamics, 2016, 28(5): 731–745.

    Article  Google Scholar 

  50. Shibata K., Koshizuka S., Sakai M. et al., Lagrangian simulations of ship-wave interactions in rough seas [J]. Ocean Engineering, 2012, 42: 13–25.

    Article  Google Scholar 

  51. Delorme L., Colagrossi A., Souto-Iglesias A. et al. A set of canonical problems in sloshing,Part I: Pressure field inforced roll comparison between experimental results and SPH [J]. Ocean Engineering, 2009, 36: 167–178.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng-nan Sun  (孙鹏楠).

Additional information

Project supported by the National Natural Science Foundation of China (Grant Nos. U1430236, 51609045).

Biography: Kai Guo (1983-), Male, Ph. D. Candiadte, Engineer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, K., Sun, Pn., Cao, Xy. et al. A 3-D SPH model for simulating water flooding of a damaged floating structure. J Hydrodyn 29, 831–844 (2017). https://doi.org/10.1016/S1001-6058(16)60795-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(16)60795-3

Key words

Navigation