Experimental study of hydrodynamic performance of full-scale horizontal axis tidal current turbine

Abstract

In this paper, experiments of both the model turbine (1 kW) and the full scale (10 kW) turbine are carried out in a towing tank and a basin, respectively, and the test of the full scale turbine on the sea is conducted. By comparison between the model turbine (D = 0.7m) and the full scale turbine (D = 2.0m), it is shown that the maximum power coefficient increases with the increase of the diameter of the turbine. The test results on the sea are used to study the hydrodynamic performances of the horizontal axis turbine, and provide a basis for the design. Experimental results can validate the accuracy of the numerical simulation results.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Bahaj A. S., Molland A. F., Chaplin J. R. Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank [J]. Renew Energy, 2007, 32(3): 407–426.

    Article  Google Scholar 

  2. [2]

    Bahaj A. S., Batten W. M. J., McCann G. Experimental verifications of numerical predictions for the hydrodyna-mic performance of a horizontal axis marine current turbines [J]. Renew Energy, 2007, 32(15): 2479–2490.

    Article  Google Scholar 

  3. [3]

    Batten W. M. J., Bahaj A. S., Molland A. F. Experimentally validated numerical method for the hydrodynamic design of horizontal axis tidal turbines [J]. Ocean Engineering, 2007, 34(7): 1013–1020.

    Article  Google Scholar 

  4. [4]

    Charles W. F., Roger C. Electrical power generation from ocean currents in the straits of florida: Some environment considerations [J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2597–2604.

    Article  Google Scholar 

  5. [5]

    Lust E. E., Luznik L., Flack K. A. et al. The influence of surface gravity waves on marine current turbine performance [J]. International Journal of Marine Energy, 2013, 3–4: 27–40.

    Article  Google Scholar 

  6. [6]

    Jing F., Sheng Q., Zhang L. Experimental research on tidal current vertical axis turbine with variable-pitch blades [J]. Ocean Engineering, 2014, 88: 228–241.

    Article  Google Scholar 

  7. [7]

    Zhang X. W., Wang S. Q., Wang F. et al. The hydrodyna-mic characteristics of free variable-pitch axis tidal turbine [J]. Journal of Hydrodynamics, 2012, 24(6): 834–839.

    Article  Google Scholar 

  8. [8]

    Batten W. M. J., Bahaj A. S., Molland A. F. et al. The prediction of the hydrodynamic performance of marine current turbines [J]. Renewable Energy, 2008, 33(5): 1085–1096.

    Article  Google Scholar 

  9. [9]

    Batten W. M. J., Bahaj A. S., Molland A. F. et al. Hydrodynamics of marine current turbines [J]. Renewable Energy, 2006, 31(2): 249–256.

    Article  Google Scholar 

  10. [10]

    Wang X. H., Xiao G., Zhang L. Hydrodynamic research for horizontal axis turbine at different rotor preset angles [J]. Acta Energiae Solaris Sinca, 2015, 36(5): 1253–1258(in Chinese).

    Google Scholar 

  11. [11]

    Maganga F., Germain G., King J. et al. Experimental cha-racteristion of flow effects on marine current turbine behaviour and on its wake properties [J]. IET Renewable Power Generation, 2010, 4(6): 498–509.

    Article  Google Scholar 

  12. [12]

    Galloway P. W., Myers L. E., Bahaj A. S. Studies of scale turbine in close proximity to waves [C]. 3rd International Conference on Ocean Energy. Bilbao, Spain, 2010.

    Google Scholar 

  13. [13]

    Barltrop N., VAryani K., Grant A. et al. Investigation into wave-current interaction in marine current turbine [J]. Proceedings of the Institution of Mechanical Engineering, Part A: Journal of Power Energy, 2007, 221(2): 233–242.

    Article  Google Scholar 

  14. [14]

    Zhang L., Li Y. B. Fluid mechanics [M]. Harbin Engineering University Press, 2001, 179–188(in Chinese).

    Google Scholar 

  15. [15]

    Liu Y. Z. Theory of ship wave making resistance [M]. National Defence Industy Press, 2003(in Chinese).

    Google Scholar 

  16. [16]

    Sheng Q. H., Zhao D. Y., Zhang L. A design and numerical simulation of horizontal tidal turbine [J]. Journal of Harbin Engineering University, 2014, 35(4): 389–394(in Chinese).

    Google Scholar 

  17. [17]

    Bao D., Liu Z. Z., Tian R. Designing on the blades of 1 kW bousehold wind turbine and experimental study on its performance [J]. Renewable Energy Resources, 2008, 26(5): 90–95.

    Google Scholar 

  18. [18]

    Lu H. Experimental study on aerodynamic performance of horizontal axis wind turbine and design [D]. Master Thesis, Nanjing, China: Nanjing University of Aeronutics and Astronautics, 2009(in Chinese).

    Google Scholar 

  19. [19]

    Li Z. C. Numerical simulation and experimental study on hydrodynamic characteristic of vertical axis tidal turbine [D]. Doctoral Thesis, Harbin, China: Harbin Engineering University, 2012(in Chinese).

    Google Scholar 

  20. [20]

    Li L. X., Liao H. S., Liu D. et al. Experimental investigation of the optimization of stilling basin with shallow water cushion used for Froude number energy dissipation [J]. Journal of Hydrodynamics, 2015, 27(4): 522–529.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wei-jia Ma 马伟佳.

Additional information

Project supported by the National Natural Science Foundation of China (Grant Nos. 51409057, 51579055), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20132304110009) and the Natural Science Foundation of Heilongjiang Province (Grant No. E2015048).

Biography: Feng-mei Jing (1982-), Female, Ph. D., Associate Professor

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jing, F., Ma, W., Zhang, L. et al. Experimental study of hydrodynamic performance of full-scale horizontal axis tidal current turbine. J Hydrodyn 29, 109–117 (2017). https://doi.org/10.1016/S1001-6058(16)60722-9

Download citation

Key words

  • Tidal current energy
  • horizontal axis turbine
  • model test
  • full scale test
  • sea trial