Skip to main content
Log in

Lattice Boltzmann simulations of oscillating-grid turbulence

  • Article
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

The lattice Boltzmann method is used to simulate the oscillating-grid turbulence directly with the aim to reproduce the experimental results obtained in laboratory. The numerical results compare relatively well with the experimental data through determining the spatial variation of the turbulence characteristics at a distance from the grid. It is shown that the turbulence produced is homogenous quasi-isotropic in case of the negligible mean flow and the absence of secondary circulations near the grid. The direct numerical simulation of the oscillating-grid turbulence based on the lattice Boltzmann method is validated and serves as the foundation for the direct simulation of particle-turbulence interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yan J., Cheng N. S., Tang H. W. et al. Oscillating-grid turbulence and its applications: A review [J]. Journal of Hydraulic Research, 2007, 45(1): 26–32.

    Article  Google Scholar 

  2. Chiapponi L., Longo S., Tonelli M. Experimental study on oscillating grid turbulence and free surface fluctuation [J]. Experiments in Fluids, 2012, 53(5): 1515–1531.

    Article  Google Scholar 

  3. Belinsky M., Rubin H., Agnon Y. et al. Characteristics of resuspension, settling and diffusion of particulate matter in a water column [J]. Environmental Fluid Mechanics, 2005, 5(5): 415–441.

    Article  Google Scholar 

  4. Wan Mohtar W. H. M., Munro R. J. Threshold criteria for incipient sediment motion on an inclined bedform in the presence of oscillating-grid turbulence [J]. Physics of Fluids, 2013, 25(1): 015103.

    Article  Google Scholar 

  5. De Silva I., Fernando H. Oscillating grids as a source of nearly isotropic turbulence [J]. Physics of Fluids, 1994, 6(7): 2455–2464.

    Article  Google Scholar 

  6. Cuthbertson A. J., Dong P., Davies P. A. Non-equilibrium flocculation characteristics of fine-grained sediments in grid-generated turbulent flow [J]. Coastal Engineering, 2010, 57(4): 447–460.

    Article  Google Scholar 

  7. Isaza J. C., Salazar R., Warhaft Z. On grid-generated turbulence in the near-and far field regions [J]. Journal of Fluid Mechanics, 2014, 753: 402–426.

    Article  Google Scholar 

  8. Srdic A., Fernando H. J. S., Montenegro L. Generation of nearly isotropic turbulence using two oscillating grids [J]. Experiments in Fluids, 1996, 20(5): 395–397.

    Article  Google Scholar 

  9. Li X. L., Fu D. X., Ma Y. W. et al. Direct numerical simulation of compressible turbulent flows [J]. Acta Mechanica Sinica, 2010, 26(6): 795–806.

    Article  Google Scholar 

  10. Michallet H., Mory M. Modelling of sediment suspensions in oscillating grid turbulence [J]. Fluid Dynamics Research, 2004, 35(2): 87–106.

    Article  Google Scholar 

  11. Lallemand P., Luo L. S. Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability [J]. Physical Review E, 2000, 61(6): 6546–6562.

    Article  MathSciNet  Google Scholar 

  12. Zhang J. F., Zhang Q. H. Hydrodynamics of fractal flocs during settling [J]. Journal of Hydrodynamics, 2009, 21(3): 347–351.

    Article  Google Scholar 

  13. Diao W., Cheng Y. G., Zhang C. Z. et al. Three-dimensional prediction of reservoir water temperature by the lattice Boltzmann method: Validation [J]. Journal of Hydrodynamics, 2015, 27(2): 248–256.

    Article  Google Scholar 

  14. Peng Y., Liao W., Luo L. S. et al. Comparison of the lattice Boltzmann and pseudo-spectral methods for decaying turbulence: Low-order statistics [J]. Computers and Fluids, 2010, 39(4): 568–591.

    Article  MathSciNet  Google Scholar 

  15. Djenidi L. Lattice-Boltzmann simulation of grid-generated turbulence [J]. Journal of fluid Mechanics, 2006, 552: 13–35.

    Article  Google Scholar 

  16. Ladd A. J. C., Verberg R. Lattice-Boltzmann simulations of particle-fluid suspensions [J]. Journal of Statistical Physics, 2001, 104(5–6): 1191–1251.

    Article  MathSciNet  Google Scholar 

  17. Chen H., Chen S., Matthaeus W. H. Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method [J]. Physical Review A, 1992, 45(8): R5339–R5342.

    Article  Google Scholar 

  18. Cosgrove J. A., Buick J. M., Tonge S. J. et al. Application of the lattice Boltzmann method to transition in oscillatory channel flow [J]. Journal of Physics A: Mathematical and General, 2003, 36(10): 2609–2620.

    Article  MathSciNet  Google Scholar 

  19. Buick J. M., Greated C. A. Gravity in a lattice Boltzmann model [J]. Physical Review E, 2000, 61(5): 5307–5320.

    Article  Google Scholar 

  20. Medina P., Sánchez M. A., Redondo J. M. Grid stirred turbulence: Applications to the initiation of sediment motion and lift-off studies [J]. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 2001, 26(4): 299–304.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-feng Zhang  (张金凤).

Additional information

Project supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 51621092), the National Natural Science Foundation of China (Grant No. 51579171), the Tianjin Program of Applied Foundation and Advanced-Technology Research (Grant No. 12JCQNJC04100) and TH-1A supercomputer.

Biography: Jin-feng Zhang (1978-), Female, Ph. D., Associate Professor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Jf., Zhang, Qh., Maa, JY. et al. Lattice Boltzmann simulations of oscillating-grid turbulence. J Hydrodyn 29, 68–74 (2017). https://doi.org/10.1016/S1001-6058(16)60718-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(16)60718-7

Key words

Navigation