Skip to main content
Log in

Modelling hydrodynamic processes in tidal stream energy extraction

Journal of Hydrodynamics Aims and scope Submit manuscript


Tidal stream energy is a type of marine renewable energy which is close to commercial-scale production. Tidal stream turbine arrays are considered as the one of the most promising exploitation methods. However, compared to the relatively mature technology of single turbine design and installation, the current knowledge on the hydrodynamic processes of tidal stream turbine arrays is still limited. Coastal models with simplified turbine representations based on the shallow water equation are among the most favorable methods for studying the tidal stream energy extraction processes in realistic sites. This paper presents a review of the progress and challenges in assessing the tidal stream energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions


  1. Lago L. I., Ponta F. L., Chen L. Advances and trends in hydrokinetic turbine systems [J]. Energy for Sustainable Development, 2010, 14(4): 287–296.

    Article  Google Scholar 

  2. Marine current turbines [EB/OL]., 2016–08–13.

  3. The European Marine Energy Center LTD [EB/OL]., 2016–08–13.

  4. Mason-Jones A., O’Doherty D. M., Morris C. E. et al. Non-dimensional scaling of tidal stream turbines [J]. Energy, 2012, 44(1): 820–829.

    Article  Google Scholar 

  5. Roc T., Conley D. C., Greaves D. Methodology for tidal turbine representation in ocean circulation model [J]. Renewable Energy, 2013, 51: 448–464.

    Article  Google Scholar 

  6. Lin J., Lin B., Sun J. et al. Numerical model simulation of island-headland induced eddies in a site for tidal current energy extraction [J]. Renewable Energy, 2017, 101: 204–213.

    Article  Google Scholar 

  7. Borthwick A. G. L. Marine renewable energy seascape [J]. Engineering, 2016, 2(1): 69–78.

    Article  Google Scholar 

  8. Laws N. D., Epps B. P. Hydrokinetic energy conversion: Technology, research, and outlook [J]. Renewable and Sustainable Energy Reviews, 2016, 57: 1245–1259.

    Article  Google Scholar 

  9. Zhang L., Shang J., Zhang Z. et al. Tidal current energy update 2015-Hydrodynamics [J]. Journal of Hydroelectric Engineering, 2016, 35(2): 1–15.

    Google Scholar 

  10. Alstom [EB/OL]., 2016–08–13.

  11. Mcadam R. A., Houlsby G. T., Oldfield M. L. G. Experimental measurements of the hydrodynamic performance and structural loading of the transverse horizontal axis water turbine: Part 1 [J]. Renewable Energy, 2013, 59(6): 105–114.

    Article  Google Scholar 

  12. Wang J., Piechna J., Müller N. A novel design of composite material axial water turbine using CFD [J]. Journal of Hydrodynamics, 2012, 24(1): 11–16.

    Article  Google Scholar 

  13. The Gorlov Helical Turbine [EB/OL].,2016–08–13.

  14. Zhao G., Yang R. S., Liu Y. et al. Hydrodynamic performance of a vertical-axis tidal-current turbine with different preset angles of attack [J]. Journal of Hydrodynamics, 2013, 25(2): 280–287.

    Article  Google Scholar 

  15. Kim E. S., Bernitsas M. M. Performance prediction of horizontal hydrokinetic energy converter using multiplecylinder synergy in flow induced motion [J]. Applied Energy, 2016, 170: 92–100.

    Article  Google Scholar 

  16. The Engineering Business Ltd. Singray tidal stream energy device?Phase 2 [R]. 2003.

  17. Chen Y. Study on the effects of tidal turbine and array on the flow field [D]. Doctoral Thesis, Beijing, China: Tsinghua University, 2015(in Chinese).

    Google Scholar 

  18. Liu C., Hu C. Numerical prediction of the hydrodynamic performance of a horizontal tidal turbines [C]. Proceedings of the ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering. St. John’s, Newfoundland, Canada, 2015.

    Google Scholar 

  19. Myers L. E., Bahaj A. S. An experimental investigation simulating flow effects in first generation marine current energy converter arrays [J]. Renewable Energy, 2012, 37(1): 28–36.

    Article  Google Scholar 

  20. Tedds S. C., Owen I., Poole R. J. Near-wake characteristics of a model horizontal axis tidal stream turbine [J]. Renewable Energy, 2014, 63(1–2): 222–235.

    Article  Google Scholar 

  21. Martin-Short R., Hill J., Kramer S. C. et al. Tidal resource extraction in the Pentland Firth, UK: Potential impacts on flow regime and sediment transport in the Inner Sound of Stroma [J]. Renewable Energy, 2015, 76: 596–607.

    Article  Google Scholar 

  22. Lin J., Sun J., Liu L. et al. Refined representation of turbines using a 3D SWE model for predicting distributions of velocity deficit and tidal energy density [J]. International Journal of Energy Research, 2015, 39(13).

    Google Scholar 

  23. Plew D. R., Stevens C. L. Numerical modelling of the effect of turbines on currents in a tidal channel? Tory Channel, New Zealand [J]. Renewable Energy, 2013, 57(1): 269–282.

    Article  Google Scholar 

  24. Stevens C. L., Smith M. J., Grant B. et al. Tidal energy resource complexity in a large strait: The karori rip, cook strait [J]. Continental Shelf Research, 2012, 33(1): 100–109.

    Article  Google Scholar 

  25. White L., Wolanski E. Flow separation and vertical motions in a tidal flow interacting with a shallow-water island [J]. Estuarine Coastal and Shelf Science, 2008, 77(3): 457–466.

    Article  Google Scholar 

  26. Signell R. P., Rockwell G. W. Transient eddy formation around headlands [J]. Journal of Geophysical Research Atmospheres, 1991, 96(C2): 2561–2575.

    Article  Google Scholar 

  27. Pattiaratchi C., James A., Collins M. Island wakes and headland eddies: A comparison between remotely sensed data and laboratory experiments [J]. Journal of Geophysical Research Oceans, 1987, 92(C1): 783–794.

    Article  Google Scholar 

  28. Bahaj A. S., Molland A. F., Chaplin J. R. et al. Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank [J]. Renewable Energy, 2007, 32(3): 407–426.

    Article  Google Scholar 

  29. Burton T., Jenkins N., Sharpe D. et al. Wind energy handbook[M]. Second Edition, Chichester, UK: John Wiley and Sons, Ltd, 2011.

    Book  Google Scholar 

  30. Adcock T. A., Draper S., Nishino T. Tidal power generation-A review of hydrodynamic modelling [J]. Proceedings of the Institution of Mechanical Engineers Part A Journal of Power and Energy, 2015, 8(7): 551–552.

    Google Scholar 

  31. Jo C. H., Jin Y. Y, Kang H. L. et al. Performance of horizontal axis tidal current turbine by blade configuration [J]. Renewable Energy, 2012, 42(1): 195–206.

    Article  Google Scholar 

  32. Defne Z., Haas K. A., Fritz H. M. Numerical modeling of tidal currents and the effects of power extraction on estuarine hydrodynamics along the Georgia coast, USA [J]. Renewable Energy, 2011, 36(12): 3461–3471.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Bin-Liang Lin  (林斌良).

Additional information

Project supported by the National High-Technology Research and Development Program of China (863 Program, Grant No. 2012AA052602).

Biography: Jie LIN (1991-), Male, Ph. D. Candidate

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Lin, BL., Sun, J. et al. Modelling hydrodynamic processes in tidal stream energy extraction. J Hydrodyn 28, 1058–1064 (2016).

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI:

Key words