Skip to main content
Log in

Numerical simulation of self-similar thermal convection from a spinning cone in anisotropic porous medium

  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

Self-similar steady natural convection thermal boundary layer flow from a rotating vertical cone to anisotropic Darcian porous medium is investigated theoretically and numerically. The transformed non-dimensional two-point boundary value problem is reduced to a system of coupled, highly nonlinear ordinary differential equations, which are solved subject to robust surface and free stream boundary conditions with the MAPLE 17 numerical quadrature software. Validation with earlier non-rotating studies is included, and also further verification of rotating solutions is achieved with a variational finite element method (FEM). The rotational (spin) parameter emerges as an inverse function of the Grashof number. The influence of this parameter, primary Darcy number, secondary Darcy number and Prandtl number on tangential velocity and swirl velocity, temperature and heat transfer rate are studied in detail. It is found that the dimensionless tangential velocity increases whilst the dimensionless swirl velocity and temperature decrease with the swirl Darcy number, tangential Darcy number and the rotational parameters. The model finds applications in chemical engineering filtration processing, liquid coating and spinning cone distillation columns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. KREITH F. Convection heat transfer in rotating systems[J]. Advances in Heat Transfer, 1968, 5: 129–251.

    Article  Google Scholar 

  2. MAKARYTCHEV S. V., LANGRISH T. A. G. and PRINCE R. G. H. Thickness and velocity of wavy liquid films on rotating conical surfaces[J]. Chemical Engineering Science, 2001, 56(1): 77–87.

    Article  Google Scholar 

  3. ADACHI T. Oxygen transfer and power consumption in an aeration system using mist and circulation flow generated by a rotating cone[J]. Chemical Engineering Science, 2015, 126: 625–632.

    Article  Google Scholar 

  4. CHAMKHA A. J., RASHAD A. M. Unsteady heat and mass transfer by MHD mixed convection flow from a rotating vertical cone with chemical reaction and Soret and Dufour effects[J]. The Canadian Journal of Chemical Engineering, 2014, 92(4): 758–767.

    Article  Google Scholar 

  5. OSALUSI E., SIDE J. and HARRIS R. et al. The effect of combined viscous dissipation and Joule heating on unsteady mixed convection MHD flow on a rotating cone in a rotating fluid with variable properties in the presence of Hall and ion-slip currents[J]. International Communications in Heat and Mass Transfer, 2008, 35(4): 413–429.

    Article  Google Scholar 

  6. NARAYANA M., AWAD F. G. and SIBANDA P. Free magnetohydrodynamic flow and convection from a vertical spinning cone with cross-diffusion effects[J]. Applied Mathematical Modelling, 2013, 37(5): 2662–2678.

    Article  MathSciNet  Google Scholar 

  7. ANILKUMAR D., ROY S. Unsteady mixed convection flow on a rotating cone in a rotating fluid[J]. Applied Mathematics and Computation, 2004, 155(2): 545–561.

    Article  MathSciNet  Google Scholar 

  8. RAJU S. H., MALLIKARJUNA B. and VARMA S. V. K. Thermophoretic effect on double diffusive convective flow of a chemically reacting fluid over a rotating cone in porous Medium[J]. International Journal of Scientific and Engineering Research, 2015, 6(1): 198–204.

    Google Scholar 

  9. ECE M. C. Free convection flow about a vertical spinning cone under a magnetic field[J]. Applied Mathematics and Computation, 2006, 179(1): 231–242.

    Article  MathSciNet  Google Scholar 

  10. VAFAI K. Handbook of porous media[M]. New York, USA: Marcel Dekker, 2005.

    MATH  Google Scholar 

  11. BÉg O. A., ZUECO J. and TAKHAR H. S. et al. Transient non-linear optically-thick radiative-convective double-diffusive boundary layers in a Darcian porous medium adjacent to an impulsively started surface: Network simulation solutions[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(11): 3856–3866.

    Article  Google Scholar 

  12. MCKIBBIN R. Convection and heat transfer in layered and anisotropic porous media (QUINTARD M., TODOROVIC M. Editors. Heat and mass transfer in porous media)[M]. Amsterdam, The Netherlands: Elsevier, 1992, 327–336.

    Google Scholar 

  13. WHITE R. E., SUBRAMANIAN V. R. Computational methods in chemical engineering with maple[M]. Berlin, Heidelberg, Germany: Spring-Verlag, 2010.

    Book  Google Scholar 

  14. BHARGAVA R., SHARMA S. and BÉG O. A. et al. Finite element study of nonlinear two-dimensional deoxygenated biomagnetic micropolar flow[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(5): 1210–1223.

    Article  MathSciNet  Google Scholar 

  15. BÉG O. A., LIK S. and ZUECO J. et al. Numerical study of magnetohydrodynamic viscous plasma flow in rotating porous media with Hall currents and inclined magnetic field influence[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(2): 345–359.

    Article  Google Scholar 

  16. BÉG O. A., UDDIN M. J. and KHAN W. A. Bioconvective non-Newtonian nanofluid transport in porous media containing micro-organisms in a moving free stream[J]. Journal of Mechanics in Medicine and Biology, 2015, 15(5): 1550071.

    Google Scholar 

  17. MAKINDE O. D., BÉG O. A. and TAKHAR H. S. Magnetohydrodynamic viscous flow in a rotating porous medium cylindrical annulus with an applied radial magnetic field[J]. International Journal of Applied Mathematics and Mechanics, 2009, 5(6): 68–81.

    Google Scholar 

  18. SEMMAH A., BÉG O. A. and MAHMOUD S. R. et al. Thermal buckling properties of zigzag single-walled carbon nanotubes using a refined nonlocal model[J]. Advances in materials Research, 2014, 3(2): 77–89.

    Article  Google Scholar 

  19. UDDIN M. J., YUSOFF N. H. M. and BÉG O. A. et al. Lie group analysis and numerical solutions for nonNewtonian nanofluid flow in a porous medium with internal heat generation[J]. Physica Scripta, 2013, 87(2): 25401–25414.

    Article  Google Scholar 

  20. CHUNG T. J. The finite element method in fluid flow[M]. New York, USA: Wiley, 1978.

    Google Scholar 

  21. BÉG O. A., RAWAT S. and ZUECO J. et al. Finite element and network electrical simulation of rotating magnetofluid flow in nonlinear porous media with inclined magnetic field and Hall currents[J]. Theoretical and Applied Mechanics, 2014, 41(1): 1–35.

    Article  Google Scholar 

  22. BÉG O. A. Numerical methods for multi-physical magnetohydrodynamics, Chapter 1 (New developments in hydrodynamics research)[M]. New York, USA: Nova Science, 2012, 1–112.

    Google Scholar 

  23. PRASAD V. R., GAFFAR S. A. and BÉG O. A. Heat and mass transfer of a nanofluid from a horizontal cylinder to a micropolar fluid[J]. Journal of Thermophysics and Heat Transfer, 2014, 29(1): 1–13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Uddin.

Additional information

Biography: O. Anwar BÉG (1969-), Male, Ph. D., Professor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bég, O.A., Uddin, M.J., Bég, T. et al. Numerical simulation of self-similar thermal convection from a spinning cone in anisotropic porous medium. J Hydrodyn 28, 184–194 (2016). https://doi.org/10.1016/S1001-6058(16)60620-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(16)60620-0

Key words

Navigation