Skip to main content
Log in

A review of studies of mechanism and prediction of tip vortex cavitation inception

  • Review Article
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

The inception of the tip vortex cavitation (TVC) is a very important problem in cavitation researches. The study of the mechanism of the TVC inception is not only conducive to its prediction, but also helps to suppress or suspend the occurrence of cavitation. In this paper, the research progresses on the TVC inception including theoretical, experimental and numerical studies mainly in the last two decades are reviewed. It is shown that the TVC inception is affected by complicated factors, such as the water quality, the average pressure and the fluctuating pressure. In the scaling law for the determination of the TVC inception, all these factors are considered. To precisely describe the scaling law, more investigations are needed to understand the effects of the water quality and the fluctuating pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. FRANC J. H., MICHEL J. M. Fundamentals of cavitation[M]. New York, USA: Kluwer Academic Publishers, 2004.

    MATH  Google Scholar 

  2. STINEBRING D. R., FARRELL K. J. and BILLET M. L. The structure of a three-dimensional tip vortex at high Reynolds numbers[J]. Journal of Fluids Engineering, 1991, 113(3): 496–503.

    Article  Google Scholar 

  3. FRUMAN D. H., DUGUE C. and PAUCHET A. et al. Tip vortex roll-up and cavitation[C]. 19th Symposium on Naval Hydrodynamics. Seoul, Korea, 1992, 24–28.

    Google Scholar 

  4. MAINES B. H., ARNDT R. Viscous effects on tip vortex cavitation[C]. 4th Proceedings of Internatioanl Symposium on Cavitation Inception. New York, USA, 1993.

    Google Scholar 

  5. BOULON O., FRANC J. P. and MICHEL J. M. Tip vortex cavitation on an oscillating hydrofoil[J]. Journal of Fluids Engineering, 1997, 119(4): 752–758.

    Article  Google Scholar 

  6. KATZ J., GALDO J. Effect of roughness on roll-up of tip vortices on a rectangular hydrofoil[J]. Journal of Aircraft, 1989, 26(3): 247–253.

    Article  Google Scholar 

  7. MCALISTER K. W., TAKAHASHI R. K. Wing pressure and trailing vortex measurements[R]. Moffett Field, California, USA, NASA TP-3151, 1991.

    Google Scholar 

  8. FRUMAN D. H. Recent progress in the understanding and prediction of tip vortex on a rectangular hydrofoil[C]. 2th International Symposium on Cavitation. Tokyo, Japan, 1994, 19–29.

    Google Scholar 

  9. MAINES B. H., ARNDT R. Tip vortex formation and cavitation[J]. Journal of Fluids Engineering, 1997, 119(2): 413–419.

    Article  Google Scholar 

  10. KELLER A. P., ROTT H. K. Scale effects on tip vortex cavitation inception[C]. Proceedings of JSMEFluids Engineering Symposium. San Franscisco, USA, 1999, FEDSM 99-7298.

    Google Scholar 

  11. ARNDT R. Cavitation in vortical flows[J]. Annual Review of Fluid Mechanics, 2002, 34(1): 143–175.

    Article  MathSciNet  Google Scholar 

  12. HSIAO C. T., CHAHINE G. L. Effect of vortex/vortex interaction on bubble dynamics and cavitation noise[C]. 5th International Symposium on Cavitation. Osaka, Japan, 2003, 1–4.

    Google Scholar 

  13. CHEN Yi-hong, ZHOU Wei-xin and SHI Xiao-jun et al. Investigation of the nuclei population distribution measurement using acoustic inverse method[J]. Journal of Ship Mechanics, 2010, 14(8): 945–950(in Chinese).

    Google Scholar 

  14. PEREIRA F., SALVATORE F. and DI F. F. et al. Experimental investigation of a cavitation propeller in non-uniform inflow[C]. 25th Symposium on Naval Hydrodynamics. St. John’s, Canada, 2004.

    Google Scholar 

  15. CHOI J. K., CHAHINE G. L. Noise due to extreme bubble deformation near inception of tip vortex cavitation[J]. Physics of Fluids, 2004, 16(7): 2411–2418.

    Article  Google Scholar 

  16. ARNDT R., MAINES B. H. Viscous effects in tip vortex cavitation and nucleation[C]. 20th Symposium on Naval Hydrodynamic. Santa Barbara, Canada, 1994.

    Google Scholar 

  17. BRIANCON-MARJOLLET L., MERLE L. Inception development and noise of a tip vortex cavitation[C]. 21th Symposium on Naval Hydrodynamics. Trondheim, Norway, 1996, 851–864.

    Google Scholar 

  18. YANG Zhi-ming, DING Yu-jian. Comparison of results on cavitation inception for checking the scale effects[J]. Journal of Hydrodynamics, Ser. B, 2004, 16(3): 308–311.

    Google Scholar 

  19. JESSUP A. Tip-leakage vortex inception on a ducted rotor[C]. 4th International Symposium on Cavitation. Pasadena, Canada, 2001.

    Google Scholar 

  20. WOSNIK M., MILOSEVIC I. Time-resolved particle image velocimetry (TR-PIV) in ventilated and naturally cavitating flows[C]. 6th International Symposium on Particle Image Velocimetry. Pasadena, Canada, 2005.

    Google Scholar 

  21. ZHANG Rong-sheng, ZHENG Yuan and CHENG Yun-shan. Study of measuring micro-bubble diame-ter[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(2): 91–95(in Chinese).

    Google Scholar 

  22. FOETH E. J., TERWISGA T. Applying time-resolved PIV to attached cavitation[C]. 6th International Symposium on Cavitation. Wageningen, The Netherlands, 2006.

    Google Scholar 

  23. ARNDT R., KELLER A. P. Water quality effects on ca-vitation inception in a trailing vortex[J]. Journal of Fluids Engineering, 1992, 114(3): 430–438.

    Article  Google Scholar 

  24. RAN B., KATZ J. Pressure fluctuations and their effect on cavitation inception within water jets[J]. Journal of Fluid Mechanics, 1994, 262: 223–263.

    Article  Google Scholar 

  25. GOPALAN S., KATZ J. and KNIO O. The flow structure in the near field of jets and its effect on cavitation inception[J]. Journal of Fluid Mechanics, 1999, 398: 1–43.

    Article  Google Scholar 

  26. GREEN S. I., ACOSTA A. J. Unsteady flow in trailing vortices[J]. Journal of Fluid Mechanics, 1991, 227: 107–134.

    Article  Google Scholar 

  27. KORKUT E., ATLAR M. On the importance of the effect of turbulence in cavitation inception tests of marine propellers[C]. Proceedings of the Royal Society of London A. 2002, 458(2017): 29–48.

    Article  Google Scholar 

  28. PENG Xiao-xing, WANG Li and PAN Sen-sen. Air content effect on the vortex cavitation[J]. Journal of Hydrodynamics, Ser. A, 1989, 4(4): 60–68(in Chinese).

    Google Scholar 

  29. ARNDT R., MARINE B. H. Nucleation and bubble dynamics in vortical flows[J]. Journal of Fluids Engineering, 2000, 122(3): 488–493.

    Article  Google Scholar 

  30. NAGAYA S., KIMOTO R. and NAGANUMA K. et al. Observation and scaling of tip vortex cavitation on elliptical hydrofoils[C]. The ASME-JSME-KSME Joint Fluids Engineering Conference. Hamamatsu, Japan, 2011, 225–230.

    Google Scholar 

  31. PEREIRA F., SALVATORE F. and FELICE F.D. et al. Experimental and numerical investigation of the cavita-tion pattern on a marine propeller[C]. 24th Symposium on Naval Hydrodynamic. Fukuoka, Japan, 2002.

    Google Scholar 

  32. BARK G., BERCHICHE N. and GREKULA M. Application of principles for observation and analysis of eroding cavitation. The EROCAV observation hand-book[M]. Chalmers, Sweden: Chalmers University of Technology, 2004.

    Google Scholar 

  33. HOUT Y., TUKKER J. and GENT A. New developments on full scale cavitation observations[C]. 6th International Symposium on Cavitation. Wageningen, The Netherlands, 2006.

    Google Scholar 

  34. HSIAO C. T., CHAHINE G. L. Scaling of tip vortex cavitation inception for a marine open propeller[C]. 27th Symposium on Naval hydrodynamics. Seoul, Korea, 2008.

    Google Scholar 

  35. PARK K., SEOL H. and CHOI W. et al. Numerical prediction of tip vortex cavitation behavior and noise considering nuclei size and distribution[J]. Applied Acoustics, 2009, 70(5): 674–680.

    Article  Google Scholar 

  36. HSIAO C. T., CHAHINE G. L. Scaling of tip vortex ca-vitation inception noise with a bubble dynamics model accounting for nuclei size distribution[J]. Journal of Fluids Engineering, 2005, 127(1): 55–65.

    Article  Google Scholar 

  37. ZHANG L., KHOO B. C. Dynamics of unsteady cavita-ting flow in compressible two-phase fluid[J]. Ocean Engineering, 2014, 87(9): 174–184.

    Article  Google Scholar 

  38. MOMPEAN G., GAVRILAKIS S. and MACHIELS L. et al. On predicting the turbulence-induced secondary flows using nonlinear k-ε models[J]. Physics of Fluids, 1996, 8(7): 1856–1868.

    Article  Google Scholar 

  39. SCHMIDT S. J., SEZAL I. H. and SCHNERR G. H. et al. Shock waves as driving mechanism for cavitation erosion[C]. Proceedings of the 8th International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows. Lyon, France, 2007.

    Google Scholar 

  40. HSIAO C. T., CHAHINE G. L. Numerical study of ca-vitation inception due to vortex/vortex interaction in a ducted propulsor[C]. 25th Symposium on Naval Hydrodynamics. St. John’s, Canada, 2004.

  41. ZHANG L., KHOO B. C. Computations of partial and super cavitating flows using implicit pressure-based al-gorithm(IPA)[J]. Computers and Fluids, 2013, 73(1): 1–9.

    Article  MathSciNet  Google Scholar 

  42. ZHANG Ling-xin, YIN Qin and SHAO Xue-ming. Theoretical and numerical studies on the bubble collapse in water[J]. Chinese Journal of Hydrodynamics, 2012, 27(1): 127–132(in Chinese).

    Google Scholar 

  43. CHOI C. L., CHAHINE G. L. A numerical study on the bubble noise and the tip vortex cavitaion inception[C]. 8th International Conference on Numerical Ship Hydrodynamic. Busan, Korea, 2003, 22–25.

    Google Scholar 

  44. CHAHINE G. L. Nuclei effects on cavitation inception and noise[C]. 25th Symposium on Naval Hydrodynamics. St. John’s, Canada, 2004.

    Google Scholar 

  45. FRUMAN D. H., CERRUTTI P. and PICHON T. et al. Effect of hydrofoil platform on tip vortex roll-up and cavitation[C]. ASME Fluids Engineering Division. New Orleans, USA, 1993, 177: 113–124.

    Google Scholar 

  46. YAKUBOV S., CANKURT B. and MAQUIL T. et al. Advanced Lagrangian approaches to cavitation modelling in marine applications[C]. 4th International Conference on Computational Methods in Marine Engineering. Amsterdam, The Netherlands, 2013, 217–234.

    Google Scholar 

  47. YAKUBOV S., CANKURT B. and ABDEL-MAKSOUD M. et al. Hybrid MPI/OpenMp parallelization of an Euler–Lagrange approach to cavitation modeling[J]. Computers and Fluids, 2013, 80(1): 365–371.

    Article  MathSciNet  Google Scholar 

  48. CHOI J. K., HSIAO C. T. and CHAHINE G. L. Tip vortex cavitation inception study using the surface averaged pressure (SAP) model combined with a bubble splitting model[C]. 25th Symposium on Naval Hydrodynamics. St. John’s, Canada, 2004.

    Google Scholar 

  49. CHAHINE Georges L. Numerical simulation of bubble flow interactions[J]. Journal of Hydrodynamics, 2009, 21(3): 316–332.

    Article  Google Scholar 

  50. ZHANG Ling-xin, WEN Zhong-qing and SHAO Xueming. Investigation of bubble-bubble interaction effect during the collapse of multi-bubble system[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 861–867(in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-ming Shao  (邵雪明).

Additional information

Project supported by the State Key Program of National Natural Science of China (Grant No. 11332009), the National Natural Science Foundation of China (Grant No. 11272284).

Biography: ZHANG Ling-xin (1978-), Male, Ph. D., Associate Professor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Lx., Zhang, N., Peng, Xx. et al. A review of studies of mechanism and prediction of tip vortex cavitation inception. J Hydrodyn 27, 488–495 (2015). https://doi.org/10.1016/S1001-6058(15)60508-X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(15)60508-X

Key words

Navigation