Skip to main content
Log in

The impact of macroalgae on mean and turbulent flow fields

  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

In this paper, we attempt to quantify the mean and turbulent flow fields around live macroalgae within a tidal inlet in Norway. Two Laminaria digitata specimens ~ 0.50m? apart were selected for detailed study and a profiling ADV was used to collect 45 velocity profiles, each composed of up to seven 0.035 m-high profiles collected for 240 s at 100 Hz, at a streamwise spacing of 0.25 m and cross-stream spacing of 0.20 m. To quantify the impact of the macroalgae, measurements were repeated over a sparser grid after the region had been completely cleared of algae and major roughness elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. FOLKARD A. M. Vegetated flows in their environmental context: A review[J]. Proceedings of the Institution of Civil Engineering: Engineering and Computational Mechanics, 2010, 164(1): 3–24.

    Google Scholar 

  2. NEPF H. M. Flow and transport in regions with aquatic vegetation[J]. Annual Review of Fluid Mechanics, 2012, 44(8): 123–142.

    Article  MathSciNet  Google Scholar 

  3. NEPF H. M., VIVONI E. R. Flow structure in depth-limited, vegetated flow[J]. Journal of Geophysical Research, 2000, 105(C12): 28547–28557.

    Article  Google Scholar 

  4. WILSON C. A. M. E., STOESSER T. and BATES P. D. et al. Open channel flow through different forms of sub-merged flexible vegetation[J]. Journal of Hydraulic Engineering, ASCE, 2003, 129(11): 847–853.

    Article  Google Scholar 

  5. FOLKARD A. M. Hydrodynamics of model Posidonia oceanica patches in shallow water[J]. Limnology Oceanography, 2005, 50(5): 1592–1600.

    Article  Google Scholar 

  6. GHISALBERTI M., NEPF H. The structure of the shear layer in flows over rigid and flexible canopie [J]. Environment Fluid Mechanics, 2006, 6(3): 277–301.

    Article  Google Scholar 

  7. MALTESE A., COX E. and FOLKARD A. M. et al. Laboratory measurements of flow and turbulence in discontinuous distributions of ligulate seagrass[J]. Journal of Hydraulic Engineering, ASCE, 2007, 133(7): 750–760.

    Article  Google Scholar 

  8. SINISCALCHI F., NIKORA V. I. and ABERLE J. Plant patch hydrodynamics in streams: Mean flow, turbulence, and drag forces[J]. Water Resources Research, 2012, 48(1): 273–279.

    Article  Google Scholar 

  9. MILER O., ALBAYRAK I. and NIKORA V. et al. Biomechanical properties of aquatic plants and their effects on plant-flow interactions in streams and rivers[J]. Aquatic Sciences, 2012, 74(1): 31–44.

    Article  Google Scholar 

  10. JOHNSON A. S. Drag, drafting, and mechanical interactions in canopies of the red alga Chondrus crispus[J]. Biology Bulletin, 2001, 201(2): 126–135.

    Article  MathSciNet  Google Scholar 

  11. LUHAR M., NEPF H. M. From the blade scale to the reach scale: A characterization of aquatic vegetative dra[J]. Advances Water Resources, 2013, 51(1): 305–316.

    Article  Google Scholar 

  12. SINISCALCHI F., NIKORA V. I. Flow-plant interactions in open-channel flows: A comparative analysis of five freshwater plant species[J]. Water Resources Research, 2012, 48(5): 2805–2814.

    Article  Google Scholar 

  13. LÓPEZ F., GARCÍA M. H. Mean flow and turbulence structure of open-channel flow through non-emergent vegetation[J]. Journal of Hydraulic Engineering, ASCE, 2001, 127(5): 392–402.

    Article  Google Scholar 

  14. GHISALBERTI M., NEPF H. M. The limited growth of vegetated shear layers[J]. Water Resources Research, 2004, 40(7): 196–212.

    Article  Google Scholar 

  15. NEPF H., GHISALBERTI M. Flow and transport in channels with submerged vegetation[J]. Acta Geophysica, 2008, 56(3): 753–777.

    Article  Google Scholar 

  16. SOULIOTIS D., PRINOS P. Effect of a vegetation patch on turbulent channel flow[J]. Journal of Hydraulic Research, 2011, 49(2): 157–167.

    Article  Google Scholar 

  17. NADEN P., RAMESHWARAN P. and MOUNTFORD O. et al. The influence of macrophyte growth, typical of eutrophic conditions, on river flow velocities and turbulence production[J]. Hydrological Processes, 2006, 20(18): 3915–3938.

    Article  Google Scholar 

  18. ZONG L., NEPF H. Flow and deposition in and around a finite patch of vegetation[J]. Geomorphology, 2010, 116(3–4): 363–372.

    Article  Google Scholar 

  19. SUKHODOLOV A. N., SUKHODOLOVA T. A. Case study: Effect of submerged aquatic plants on turbulence structure in a lowland river[J]. Journal of Hydraulic Engineering, ASCE, 2014, 136(7): 434–446.

    Article  Google Scholar 

  20. WHITE B., NEPF H. Shear instability and coherent st-ructures in shallow adjacent to a porous layer[J]. Journal of Fluid Mechanics, 2007, 593: 1–32.

    Article  Google Scholar 

  21. CAMERON S. M., NIKORA V. I. and ALBAYRAK I. et al. Interactions between aquatic plants and turbulent flow: A field study using stereoscopic PIV[J]. Journal of Fluid Mechanics, 2013, 732: 345–372.

    Article  Google Scholar 

  22. KOEHL M. A. R., ALBERTE R. S. Flow, flapping, and photosynthesis of Nereocystis luetkeana: A functional comparison of undulate and flat blade morphologies[J]. Marine Biology, 1988, 99(3): 435–444.

    Article  Google Scholar 

  23. NIKORA V., MCLEAN S. and COLEMAN S. et al. Double-averaging concept for rough-bed open-channel and overland flows: Applications[J]. Journal of Hydraulic Engineering, ASCE, 2014, 133(8): 884–895.

    Article  Google Scholar 

  24. POKRAJAC D., MCEWAN I. and NIKORA V. Spatially averaged turbulent stress and its partitioning[J]. Experiments in Fluids, 2008, 45(1): 73–83.

    Article  Google Scholar 

  25. PAUL Maike, HENRY Pierre-Yves T. Evaluation of the use of surrogate Laminaria digitata in eco-hydraulic la-boratory experiments[J]. Journal of Hydrodynamics, 2014, 26(3): 374–383.

    Article  Google Scholar 

  26. PARKHURST J. M., PRICE G. J. and SHARROCK P. J. et al. Phase unwrapping algorithms for use in a true real-time optical body sensor system for use during radiotherapy[J]. Optices Applicata, 2011, 50(35): 6430–6439.

    Article  Google Scholar 

  27. WAHL T. L. Discussion of “Despiking acoustic Doppler velocimeter data” by Derek G. Goring and Vladimir I. Nikora[J]. Journal of Hydraulic Engineering, ASCE, 2003, 129(6): 484–487.

    Article  Google Scholar 

  28. ZEDEL L., HAY A. E. Resolving velocity ambiguity in multifrequency, pulse-to-pulse coherent Doppler sonar[J]. IEEE Journal of Oceanic Engineering, 2010, 35(4): 847–851.

    Article  Google Scholar 

  29. LHERMITTE R., SERAFIN R. Pulse-to-pulse coherent Doppler sonar signal processing techniques[J]. Journal of Atmospheric and Oceanic Technology, 1984, 1(4): 293–308.

    Article  Google Scholar 

  30. FRANCA M. J., LEMMIN U. Eliminating velocity aliasing in acoustic Doppler velocity profiler data[J]. Measurement Science Technology, 2006, 17(2): 313–322.

    Article  Google Scholar 

  31. LEMMIN U., ROLLAND T. Acoustic velocity profiler for laboratory and field studies[J]. Journal of Hydraulic Engineering, ASCE, 1997, 123(12): 1089–1098.

    Article  Google Scholar 

  32. FOLKARD A. M. Flow regimes in gaps within stands of flexible vegetation: Laboratory flume simulations[J]. Environment Fluid Mechanics, 2011, 11(3): 289–306.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Thomas.

Additional information

Biography: THOMAS Robert E. (1979-), Male, Ph. D., Post-Doctoral Research Associate

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, R.E., McLelland, S.J. The impact of macroalgae on mean and turbulent flow fields. J Hydrodyn 27, 427–435 (2015). https://doi.org/10.1016/S1001-6058(15)60500-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(15)60500-5

Key words

Navigation