Skip to main content
Log in

Non-spherical multi-oscillations of a bubble in a compressible liquid

  • Review article
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

Bubble dynamics are associated with wide and important applications in cavitation erosion in many industrial systems, medical ultrasonics and underwater explosions. Two recent developments to this classical problem are reviewed in this paper. Firstly, computational studies on the problem have commonly been based on an incompressible fluid model. However, a bubble usually undergoes significantly damped oscillation due to the compressible effects. We model this phenomenon using weakly compressible theory and a modified boundary integral method. This model considers the energy loss due to shock waves emitted at minimum bubble volumes. Secondly, the computational studies so far have largely been concerned with the first-cycle of oscillation. However, a bubble usually oscillates for a few cycles before it breaks into much smaller ones. We model both the first- and second-cycles of oscillationand predict damped oscillations. Our computations correlate well with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. RAYLEIGH L. On the pressure developed in a liquid during the collapse of a spherical cavity[J]. Philosophical Magazine Series, 1917, 34(6): 200, 94–98.

    Article  Google Scholar 

  2. TAYLOR G. I. 1942 Vertical motion of a spherical bubble and the pressure surrounding it. In underwater explosion research Volume II [M]. Washington D.C., USA: Office of Naval Research, 1950, 131–144.

    Google Scholar 

  3. PLESSET M. S., PROSPERETTI A. Bubble dynamics and cavitation[J]. Annual Review Fluid Mechanics, 1977, 9: 145–185

    Article  Google Scholar 

  4. BLAKE J. R., GIBSON D. C. Cavitation bubbles near boundaries[J]. Annual Review Fluid Mechanics, 1987, 19: 99–123

    Article  Google Scholar 

  5. YOUNG F. R. Cavitation [M]. New York, USA: McGraw-Hill, 1989.

    Google Scholar 

  6. LEIGHTON T. The acoustic bubble [M]. London, UK: Academic Press, 1994.

    Google Scholar 

  7. BRENNEN C. E. Cavitation and bubble dynamics [ M]. New York, USA: Oxford University Press, 1995.

    MATH  Google Scholar 

  8. LAUTERBORN W., KURZ T. Physics of bubble oscillations[ J]. Reports on Progress in Physics, 2010, 73(10): 106501.

    Google Scholar 

  9. KLASEBOER E., FONG S. W. and TURANGAN C. K. et al. Interaction of lithotripter shockwaves with single inertial cavitation[J]. Journal of Fluid Mechanics, 2007, 593: 33–56

    Article  Google Scholar 

  10. ILORETA J. I., FUNG N. M. and SZERI A. J. Dynamics of bubbles near a rigid surface subjected to a lithotripter shock wave: I. Consequences of interference between incident and reflected waves[J] Journal of Fluid Mechanics, 2008, 616: 43–61

    Article  Google Scholar 

  11. CALVISI M. L., ILORETA J. I. and SZERI A. J. Dynamics of bubbles near a rigid surface subjected to a lithotripter shock wave: II. Reflected shock intensifies non-spherical cavitation collapse[J]. Journal of Fluid Mechanics, 2008, 616: 63–97

    Article  Google Scholar 

  12. ROBERTS W. W., HALL T. L. and IVES K. et al. Pulsed cavitational ultrasound: A noninvasive technology for controlled tissue ablation (histotripsy) in the rabbit kidney[J]. Journal of Urology, 2006, 175(2): 734–738.

    Article  Google Scholar 

  13. COUSSIO C. C., ROY R. A. Applications of acoustics and cavitation to non-invasive therapy and drug delivery[ J]. Annual Review Fluid Mechanics, 2007, 40: 395–420.

    Article  Google Scholar 

  14. LESLIE T. A., KENNEDY J. E. High-intensity focused ultrasound principles, current uses, and potential for the future[J]. Ultrasound Quarterly, 2006, 22(4): 263–272

    Article  Google Scholar 

  15. SONG W. D., HONG M. H. and LUK’YANCHUK B. et al. Laser-induced cavitation bubbles for cleaning of solid surfaces[J]. Journal of Applied Physics, 2004, 95(6): 2952–2956

    Article  Google Scholar 

  16. LENOIR M. A calculation of the parameters of the high-speed jet formed in the collapse of a bubble[J]. Journal of Applied Mechanics, Technical Physics, 1979, 20(3): 333–337

    Article  Google Scholar 

  17. GUERRI L., LUCCA G. and PROSPERETTI A. A numerical method for the dynamics of non-spherical cavitation bubbles[C]. Proceedings of the Second International Colloquium on Drops and Bubbles. Monterey, California, USA, 1981.

    Google Scholar 

  18. BLAKE J. R., TAIB B. B. and DOHERTY G. Transient cavities near boundaries. Part 1. Rigid boundary[J]. Journal of Fluid Mechanics, 1986, 170: 479–497

    Article  Google Scholar 

  19. BLAKE J. R., GIBSON D. C. Cavitation bubbles near boundaries[J]. Annual Review Fluid Mechanics, 1987, 19: 99–123

    Article  Google Scholar 

  20. BLAKE J. R., HOOTON M. C. and ROBINSON P. B. et al. Collapsing cavities, toroidal bubbles and jet impact[ J]. Philosophical Transactions of the Royal Society, 1997, 355: 537–550

    Article  MathSciNet  Google Scholar 

  21. BRUJAN E. A., KEEN G. S. and VOGEL A. et al. The final stage of the collapse of a cavitation bubble close to a rigid boundary[J]. Physics of Fluids, 2002, 14(1): 85–92.

    Article  Google Scholar 

  22. SZERI A. J., STOREY B. D. and PEARSON A. et al. Heat and mass transfer during the violent collapse of non-spherical bubbles[J]. Physics of Fluids, 2003, 15(9): 2576–2586

    Article  Google Scholar 

  23. PEARSON A., BLAKE J. R. and OTTO S. R. Jets in bubbles[J]. Journal of Engineering Mathematics, 2004, 48(3–4): 391–412

    Article  MathSciNet  Google Scholar 

  24. LIND S. J., PHILLIPS T. N. The influence of viscoelasticity on the collapse of cavitation bubbles near a rigid boundary[J]. Theoretical and Computational Fluid Dynamics, 2012, 26(1-4): 245–277

    Article  Google Scholar 

  25. CURTISS G. A., LEPPINEN D. M. and WANG Q. X. et al. Ultrasonic cavitation near a tissue layer[J]. Journal of Fluid Mechanics, 2013, 730: 245–272

    Article  MathSciNet  Google Scholar 

  26. WANG Q. X. Underwater explosion bubble dynamics in a compressible liquid[J]. Physics of Fluids, 2013, 25(7): 072104.

    Google Scholar 

  27. CHAHINE G. L., BOVIS A. Oscillation and collapse of a cavitation bubble in the vicinity of a two-liquid interface. Cavitation and inhomogeneities in underwater acoustics [M]. New York, USA: Springer-Verlag, 1980.

    Google Scholar 

  28. CHAHINE G. L., PERDUE T. O. Simulation of the three-dimensional behaviour of an unsteady large bubble near a structure[C]. Proceedings of the Third International Colloquium on Drops and Bubbles. Monterey, California, USA, 1988.

    Google Scholar 

  29. CHAHINE G. L., HARRIS G. Multi-cycle underwater explosion bubble model. Part I: Theory and validation examples for free-field bubble problems[R]. U.S. Naval Surface Warfare Center Indian Head Division, Report IHCR 98-64, 1998.

    Google Scholar 

  30. CHAHINE G. L., HARRIS G. Multi-cycle underwater explosion model. Part II: Validation examples for hull girder whipping problems[R]. U.S. Naval Surface Warfare Center Indian Head Division, Report IHCR 98-65, 1998.

    Google Scholar 

  31. DUNCAN J. H., MILLIGAN C. D. and ZHANG S. G. On the interaction between a bubble and a submerged compliant structure[J]. Journal of Sound and Vibration, 1996, 197(1): 17–44

    Article  Google Scholar 

  32. WANG Q. X. The evolution of a gas bubble near an inclined wall[J]. Theoretical and computational fluid dynamics, 1998, 12: 29–51

    Article  Google Scholar 

  33. WANG Q. X. The numerical analyses of the evolution of a gas bubble near an inclined wall[J]. Physics of Fluids, 2004, 16: 1610–1619

    Article  Google Scholar 

  34. KLASEBOER E., HUNG K. C. and WANG C. et al. Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure[J]. Journal of Fluid Mechanics, 2005, 537: 387–413

    Article  Google Scholar 

  35. JAYAPRAKASH A., HSIAO Chao-Tsung, and CHAHINE G. Numerical and experimental study of the interaction of a spark-generated bubble and a vertical wall[J]. Journal of Fluids Engineering, 2010, 134: 031301.

  36. JAYAPRAKASH A., SINGH S. and CHAHINE G. Experimental and numerical investigation of single bubble dynamics in a two-phase bubbly medium[J]. Journal of Fluids Engineering, 2011, 133(12): 121305.

    Google Scholar 

  37. YU P. W., CECCIO S. L. and TRYGGVASON G. The collapse of a cavitation bubble in shear flows—A numerical STUDY[J]. Physics of Fluids, 1995, 7(11): 2608–2616.

    Article  Google Scholar 

  38. POPINET S., ZALESKI S. Bubble collapse near a solid boundary: A numerical study of the influence of viscosity[ J]. Journal of Fluid Mechanics, 2002, 464: 137–163.

    Article  Google Scholar 

  39. TURANGAN C. K., JAMALUDDIN A. R. and BALL G. J. et al. Free-Lagrange simulations of the expansion and jetting collapse of air bubbles in water[J]. Journal of Fluid Mechanics, 2008, 598: 1–25

    Article  Google Scholar 

  40. MINSTER V., De WILDE J. and PROOST J. Simulation of the effect of viscosity on jet penetration into a single cavitating bubble[J]. Journal Applied Physics, 2009, 106: 084906.

  41. Jr. WARDLAW A., LUTON J. A. Fluid-structure interaction mechanisms for close-in explosions[J]. Shock and Vibration Journal, 2000, 7(5): 265–275

    Article  Google Scholar 

  42. Jr. WARDLAW A., LUTON J. A. and RENZI J. R. et al. The Gemini Euler solver for the coupled simulation of underwater explosions[R]. NSWCIHD/IHTR, 2500, 2003.

    Google Scholar 

  43. Jr. WARDLAW A., LUTON J. A. and RENZI J. R. et al. Fluid-structure coupling methodology for undersea weapons. Fluid structure interaction II [M]. Southampton, UK: WIT Press, 2003, 251–263.

    Google Scholar 

  44. ADOUA R., LEGENDRE D. and MAGNAUDET J. Reversal of the lift force on an oblate bubble in a weakly viscous linear shear flow[J]. Journal of Fluid Mechanics, 2009, 628: 23–41

    Article  Google Scholar 

  45. BONHOMME R., MAGNAUDET J. and DUVAL F. et al. Inertial dynamics of air bubbles crossing a horizontal fluid-fluid interface[J]. Journal of Fluid Mechanics, 2012, 707: 405–443

    Article  Google Scholar 

  46. BONOMETTI T., MAGNAUDET J. An interface-capturing method for incompressible two-phase flows. Validation and application to bubble dynamics[J]. International Journal of Multiphase Flow, 2007, 33(2): 109–133.

    Article  Google Scholar 

  47. HUA J., LOU J. Numerical simulation of bubble rising in viscous liquid[J]. Journal of Computational Physics, 2007, 222: 769–795

    Article  Google Scholar 

  48. JOHNSEN E., COLONIUS T. Shock-induced collapse of a gas bubble in shockwave lithotripsy[J]. Journal of the Acoustical Society of America, 2008, 124(4): 2011–2020.

    Article  Google Scholar 

  49. JOHNSEN E., COLONIUS T. Numerical simulation of non-spherical bubble collapse[J]. Journal of Fluid Mechanics, 2009, 629: 231–262

    Article  MathSciNet  Google Scholar 

  50. YUE P., FENG J. J. and BERTELO C. A. et al. An arbitrary Lagrangian-Eulerian method for simulating bubble growth in polymer foaming[J]. Journal of Computational Physics, 2007, 226: 2229–2249

    Article  Google Scholar 

  51. YANG B., PROSPERETTI A. Vapour bubble collapse in isothermal and non-isothermal liquids[J]. Journal of Fluid Mechanics, 2008, 601: 253–279

    Article  Google Scholar 

  52. TOMITA Y., SHIMA A. Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse[J]. Journal of Fluid Mechanics, 1986, 169: 535–564.

    Article  Google Scholar 

  53. PHILIPP A., LAUTERBORN W. Cavitation erosion by single laser-produced bubbles[J]. Journal of Fluid Mechanics, 1998, 361: 75–116

    Article  Google Scholar 

  54. HERRING C. The theory of the pulsations of the gas bubbles produced by an underwater explosion[R]. US National Defence Research Communication Report, 1941.

    Google Scholar 

  55. KELLER J. B., KOLODNER I. I. Damping of underwater explosion bubble oscillations[J]. Journal of Applied Physics, 1956, 27(10): 1152–1161

    Article  Google Scholar 

  56. PROSPERETTI A., LEZZI A. Bubble dynamics in a compressible liquid. Part. 1. First-order theory[J]. Journal of Fluid Mechanics, 1986, 168: 457–478

    Article  Google Scholar 

  57. LEZZI A., PROSPERETTI A. Bubble dynamics in a compressible liquid. Part. 2. Second-order theory[J]. Journal of Fluid Mechanics, 1987, 185: 289–321

    Article  Google Scholar 

  58. GEERS T. L., ZHANG P. Doubly asymptotic approximations for submerged structures with internal fluid volumes[ J]. Journal Applied Mechanics, 1994, 61: 893–906.

    Article  Google Scholar 

  59. GEERS T. L., HUNTER K. S. An integrated wave-effects model for an underwater explosion bubble[J]. Journal of the Acoustical Society of America, 2002, 11(1): 1584–1601.

    Article  Google Scholar 

  60. GEERS T. L., LAGUMBAY R. S. and VASILYEV O. V. Acoustic-wave effects in violent bubble collapse[J]. Journal Applied Physics, 2012, 112(5): 054910.

    Google Scholar 

  61. WANG Q. X., BLAKE J. R. Non-spherical bubble dynamics in a compressible liquid. Part 1. Travelling acoustic wave[J]. Journal of Fluid Mechanics, 2010, 659: 191–224

    Article  MathSciNet  Google Scholar 

  62. WANG Q. X., BLAKE J. R. Non-spherical bubble dynamics in a compressible liquid. Part 2. Acoustic standing wave[J]. Journal of Fluid Mechanics, 2011, 679: 559-581.

    Article  MathSciNet  Google Scholar 

  63. WANG Q. X., YEO K. S. and KHOO B. C. et al. Nonlinear interaction between gas bubble and free surface[ J]. Computers and Fluids, 1996, 25(7): 607–628

    Article  Google Scholar 

  64. TAIB B. B. Boundary integral method applied to cavitation bubble dynamics[D]. Doctoral Thesis, New South Wales, Australia: The University of Wollonggong, 1985.

    Google Scholar 

  65. BEST J. P. The rebound of toroidal bubbles. In bubble dynamics and interface phenomena [M]. Dordrecht, The Netherlands: Kluwer, 1994, 405–412.

    Book  Google Scholar 

  66. ZHANG S. G., DUNCANAND J. H. and CHAHINE G. L. The final stage of the collapse of a cavitation bubble near a rigid wall[J]. Journal of Fluid Mechanics, 1993, 257: 147–181

    Article  Google Scholar 

  67. ZHANG S. G., DUNCAN J. H. On the non-spherical collapse and rebound of a cavitation bubble[J]. Physics of Fluids, 1994, 6(7): 2352–2357

    Article  Google Scholar 

  68. BEST J. P. The formation of toroidal bubbles upon collapse of transient cavities[J]. Journal of Fluid Mechanics, 1993, 251: 79–107

    Article  Google Scholar 

  69. PEDLEY T. J. The toroidal bubble[J]. Journal of Fluid Mechanics, 1968, 32: 97–112

    Article  Google Scholar 

  70. LUNDGREN T. S., MANSOUR N. N. Vortex ring bubbles[ J]. Journal of Fluid Mechanics, 1991, 72: 391–399.

    MATH  Google Scholar 

  71. WANG Q. X., YEO K. S. and KHOO B. C. et al. Strong interaction between buoyancy bubble and free surface[ J]. Theoretical and Computational Fluid Dynamics, 1996, 8(1): 73–88

    Article  Google Scholar 

  72. WANG Q. X., YEO K. S. and KHOO B. C. et al. Vortex ring modelling for toroidal bubbles[J]. Theoretical and Computational Fluid Dynamics, 2005, 19(5): 303–317.

    Article  Google Scholar 

  73. YANG Y. X., WANG Q. X. and KEAT T. S. Dynamic features of a laser-induced cavitation bubble near a solid boundary[J]. Ultrasonics Sonochemistry, 2013, 20(4): 1098–1103

    Article  Google Scholar 

  74. LAUTERBORN W., OHL C. D. Cavitation bubble dynamics[ J]. Ultrasonics Sonochemistry, 1997, 4(2): 65–75.

    Article  Google Scholar 

  75. WANG Q. X. Multi-oscillation of a bubble in a compressible liquid near a rigid boundary[J]. Journal of Fluid Mechanics, 2014, 745: 509–536

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian-xi Wang.

Additional information

Biography: WANG Qian-xi (1960-), Male, Ph. D.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Qx., Yang, Yx., Tan, D.S. et al. Non-spherical multi-oscillations of a bubble in a compressible liquid. J Hydrodyn 26, 848–855 (2014). https://doi.org/10.1016/S1001-6058(14)60093-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(14)60093-7

Key words

Navigation