Skip to main content
Log in

Hydrodynamics of marine and offshore structures

  • Review article
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

An overview of hydrodynamic problems related to the broad variety of ships and sea structures involved in transportation, oil and gas exploration and production, marine operations, recovery of oil-spill, renewable energy, infrastructure and aquaculture is given. An approximate hydroelastic model for wave and current induced response of a floating fish farm with circular plastic collar and net cage is discussed. Weakly nonlinear potential-flow problems such as slow-drift motions and stationkeeping, springing of ships and ringing are given special attention. Body-fixed coordinate system is recommended in weakly nonlinear potential-flow analysis of bodies with sharp corners. Dynamic ship instabilities, Mathieu-type instabilities, chaos and two-phase flow involving interface instabilities are discussed. It is advocated that slamming must be coupled with structural mechanics in order to find important time scales of the many physical effects associated with slamming and that both water entry and exit matter in describing the global wetdeck slamming effects. Further, sloshing-induced slamming in prismatic LNG tanks is perhaps the most complicated slamming problem because many fluid mechanic and thermodynamic parameters as well as hydroelasticity may matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DYSTHE K., KROGSTAD H. E. and MÜLLER P. Oceanic rogue waves[J]. Annual Review of Fluid Mechanics, 2008, 40: 287–310

    Article  MathSciNet  Google Scholar 

  2. SIENSEN A. J. A survey of dynamic positioning control systems[J]. Annual Reviews in Control, 2011, 35(1): 123–136

    Article  Google Scholar 

  3. FALTINSEN O. M. Hydrodynamics of high-speed marine vehicles [M]. New York, USA: Cambridge University Press, 2005.

    Google Scholar 

  4. FALTINSEN O. M., TIMOKHA A. N. Sloshing [M]. Cambridge, UK: Cambridge University Press, 2009.

    MATH  Google Scholar 

  5. XIANG X., FALTINSEN O. M. Maneuvering of two interacting ships in calm water[J]. The 11th International Symposium on Practical Design of Ships and other Floating Structures. Rio de Janeiro, Brazil, 2010, 161–171.

    Google Scholar 

  6. ZHAO R., FALTINSEN O. M. Water entry of two-dimensional bodies[J]. Journal of Fluid Mechanics, 1993, 246: 593–612

    Article  Google Scholar 

  7. KRISTIANSEN T., FALTINSEN O. M. Gap resonance analyzed by a new domain-decomposition method combining potential and viscous flow[J]. Applied Ocean Research, 2011, 34: 198–208

    Article  Google Scholar 

  8. GRECO M., COLICCHIO G., LUGNI C. and FALTINSEN O. M. 3D Domain decomposition for violent wave-ship interactions[J]. International Journal for Numerical Methods in Engineering, 2013, 95(8): 661-684.

    Google Scholar 

  9. BARDESTANI M., FALTINSEN O. M. A two-dimensional approximation of a floating fish farm in waves and current with the effect of snap loads[C]. Proceedings of the 32nd International Conference on Ocean, Offshore and Arctic Engineering. Nantes, France, 2013.

    Google Scholar 

  10. KRISTIANSEN T., FALTINSEN O. M. Modeling of current loads on aquaculture net cages[J]. Journal of Fluids and Structures, 2012, 34: 218–235

    Article  Google Scholar 

  11. LI P., FALTINSEN O. M. Wave-induced vertical response of an elastic circular collar of a floating fish farm[C]. The 10th International Conference on Hydrodynamics (ICHD 2012). St. Petersburg, Russia, 2012.

    Google Scholar 

  12. LI P., FALTINSEN O. M. and GRECO M. Wave-induced accelerations of a fish-farm elastic floater: Experimental and numerical studies[C]. OMAE2014–23302. San Francisco, California, USA, 2014.

    Google Scholar 

  13. SHAO Y. L., FALTINSEN O. M. Use of body-fixed coordinate system in analysis of weakly nonlinear wave-body problems[J]. Applied Ocean Research, 2010, 32: 20–33

    Article  Google Scholar 

  14. SHAO Y. L., FALTINSEN O. M. Second-order diffraction and radiation of a floating body with small forward speed[J]. Journal of Offshore Mechanics and Arctic Engineering, 2013, 135(1): 011301.

    Google Scholar 

  15. SHAO Y. L., FALTINSEN O. M. Linear seakeeping and added resistance analysis by means of body-fixed coordinate system[J], Journal of Marine Science and Technology, 2012, 17(4): 493–510

    Article  Google Scholar 

  16. SHAO Y. L., FALTINSEN O. M. A numerical study of the second-order wave excitation of ship springing in infinite water depth[J]. Journal of Engineering for the Maritime Environment, 2012, 226(2): 103–119

    Google Scholar 

  17. FALTINSEN O. M., TIMOKHA A. N. Analytically approximate natural sloshing modes and frequencies in two-dimensional tank[J]. European Journal of Mechanics- B/Fluids, 2014, 47: 176–187

    Article  MathSciNet  Google Scholar 

  18. MIYAKE R., MATSUMOTO T., ZHU T. and ABE N. Experimental studies on the hydroelastic response due to springing using a flexible mega-container ship model[C]. Proceedings of the 8th International Conference on Hydrodynamics (ICHD 2008). Nantes, France, 2008.

    Google Scholar 

  19. PRPIC-ORSIC J., FALTINSEN O. M. Estimation of ship speed loss and associated CO2 emissions in a seaway[ J]. Ocean Engineering, 2012, 44(1): 1–10

    Article  Google Scholar 

  20. YOU J. K. Numerical studies on wave forces and moored ship motions in intermediate and shallow water[D]. Doctoral Thesis Trondheim, Norway: NTNU, 2012, 238.

    Google Scholar 

  21. SKEJIC R., FALTINSEN O. M. A unified seakeeping and maneuvering analysis of ships in regular waves[J]. Journal of Marine Science and Technology, 2008, 13(4): 371–394

    Article  Google Scholar 

  22. ROGNEBAKKE O. F., FALTINSEN O. M. Coupling of sloshing and ship motions[J]. Journal of Ship Research, 2003, 47(3): 208–221

    Google Scholar 

  23. SHAO Y. L., FALTINSEN O. M. A harmonic polynomial cell (HPC) method for 3D Laplace equation with application in marine hydrodynamics[J]. Journal of Computational Physics, 2014, 274: 312–332

    Article  MathSciNet  Google Scholar 

  24. HUSEBY M., GRUE J. An experimental investigation of higher-harmonic wave forces on a vertical cylinder[J]. Journal of Fluid Mechanics, 2000, 414: 75–103

    Article  Google Scholar 

  25. THYS M., FALTINSEN O. M. Theory and experiments of a free-running fishing vessel in stern sea[C]. OMAE2014–2358. San Francisco, California, USA, 2014.

    Google Scholar 

  26. SALVESEN N., TUCK E. O. and FALTINSEN O. M. Ship motions and sea loads[J]. Transaction of Society of Naval Architects and Marine Engineering, 1970, 78: 250–287

    Google Scholar 

  27. GRECO M., LUGNI C. and FALTINSEN O. M. Can the water on deck influence the parametric roll of a FPSO? A numerical and experimental investigation[J]. European Journal of Mechanics-B/Fluids, 2014, 47: 188–201.

    Article  Google Scholar 

  28. HASLUM H., FALTINSEN O. M. Alternative shape of spar platforms for use in hostile areas[C]. OTC. Houston, Texas, USA, 1999.

    Google Scholar 

  29. AMINI A. Contractile floating barriers for confinement and recuperation of oil slicks[D]. Doctoral Thesis, Route Cantonale, Lausanne, Switzerland: Ecole Polytechnique Federale de Lausanne, 2007.

    Google Scholar 

  30. KRISTIANSEN D., FALTINSEN O. M. A numerical study on stratified shear layers with relevance to oilboom failure[C]. OMAE2014–23981. San Francisco, California, USA, 2014.

    Google Scholar 

  31. FALTINSEN O. M. Sea loads on ships and offshore structures [M]. Cambridge, UK: Cambridge University Press, 1990.

    Google Scholar 

  32. FALTINSEN O. M. The effect of hydroelasticity on slamming[ J]. Philosophical Transactions of the Royal Society London A, 1997, 355(1724): 575–591

    Article  Google Scholar 

  33. GE C., FALTINSEN O. M. and MOAN T. Global hydroelastic response of catamarans due to wetdeck slamming[ J]. Journal of Ship Research, 2005, 49(1): 24–42.

    Google Scholar 

  34. ABRAHAMSEN B. C., FALTINSEN O. M. The natural frequency of the pressure oscillations inside an air pocket which is entrapped between a water-wave entrapped air pocket on a figid wall[J]. Journal of Fluids and Structures, 2012, 35: 200–212

    Article  Google Scholar 

  35. ABRAHAMSEN B. C., FALTINSEN O. M. The effect of air leakage and heat exchange on the decay of entrapped air pocket slamming oscillations[J]. Physics of Fluids, 2011, 23(10): 102107.

    Google Scholar 

  36. LUGNI C., BROCCHINI M. and FALTINSEN O. M. Wave impact loads: The role of the flip-through[J]. Physics of Fluids, 2006, 18(12): 122101.

    Google Scholar 

  37. LUGNI C., MIOZZI M., BROCCHINI M. and FALTINSEN O. M. Evolution of the air-cavity during a depressurized wave Impact. Part I: The kinematic flow field[J]. Physics of Fluids, 2010, 22(5): 056101.

    Google Scholar 

  38. LUGNI C., BROCCHINI M. and FALTINSEN O. M. Evolution of the air-cavity during a depressurized wave Impact. Part II: The dynamic field[J]. Physics of Fluids, 2010, 22(5): 056102.

    Google Scholar 

  39. GRACZYK M. Experimental investigation of sloshing loading and load effects in membrane LNG tanks subjected random excitation[D]. Doctoral Thesis, Trondheim, Norway: NTNU, 2008.

    Google Scholar 

  40. LUGNI C., BARDAZZI A., FALTINSEN O. M. and GRAZIANI G. Hydroelastic slamming response in the evolution of a flip-through event during shallow-liquid sloshing[J]. Physics of Fluids, 2014, 26(3): 032108.

    Google Scholar 

  41. FALTINSEN O. M., FIROOZHKOOHI R. and TIMOKHA A. N. Steady-state liquid sloshing in a rectangular tank with slat-type screen in the middle: Quasi-linear theory modal analysis and experiments[J]. Physics of Fluids, 2011, 23(4): 042101.

    Google Scholar 

  42. FALTINSEN O. M., FIROOZHKOOHI R. and TIMOKHA A. N. Effect of central slotted screen with a high solidity ratio on the secondary resonance phenomenon for liquid sloshing in a rectangular tank[J]. Physics of Fluids, 2011, 23(6): 062106.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Faltinsen.

Additional information

Biography: FALTINSEN O. M. (1944-), Male, Ph. D., Professor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faltinsen, O.M. Hydrodynamics of marine and offshore structures. J Hydrodyn 26, 835–847 (2014). https://doi.org/10.1016/S1001-6058(14)60092-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(14)60092-5

Key words

Navigation