Skip to main content
Log in

Multi-Mode of Vortex-Induced Vibration of a Flexible Circular Cylinder

  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

The vortex-induced vibration of a flexible circular cylinder is investigated at a constant Reynolds number of 1 000. The finite-volume method on moving meshes is applied for the fluid flow, and the Euler-Bernoulli beam theory is used to model the dynamic response of a flexible cylinder. The relationship between the reduced velocity and the amplitude response agrees well with the experimental results. Moreover, five different vibrating modes appear in the simulation. From the comparisons of their vortex structures, the strength of the wake flow is related to the exciting vibrating mode and different vortex patterns arise for different vibrating modes. Only 2P pattern appears in the first vibrating mode while 2S−2P patterns occur in the other vibrating modes if monitoring at different sections along the length of the cylinder. The vibration of the flexible cylinder can also greatly alter the three-dimensionality in the wake, which needs further studies in our future work, especially in the transition region for the Reynolds number from 170 to 300.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SARPKAYA T. A critical review of the intrinsic nature of vortex-induced vibrations[J]. Journal of Fluids and Structures, 2004, 19(4): 389–447.

    Article  Google Scholar 

  2. WILLIAMSON C. H. K., GOVARDHAN R. A brief review of recent results in vortex-induced vibrations[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(6–7): 713–735.

    Article  Google Scholar 

  3. LIN Li-ming, LING Guo-can and WU Ying-xiang et al. Nonlinear fluid damping in structure-wake oscillators in modeling vortex-induced vibrations[J]. Journal of Hydrodynamics, 2009, 21(1): 1–11.

    Article  Google Scholar 

  4. SRINIL N., WIERCIGROCH M. and O’BRIEN P. Reduced-order modelling of vortex-induced vibration of catenary riser[J]. Ocean Engineering, 2009, 36(17–18): 1404–1414.

    Article  Google Scholar 

  5. XU Wai-hai, WU Ying-xiang and ZENG Xiao-hui et al. A new wake oscillator model for predicting vortex induced vibration of a circular cylinder[J]. Journal of Hydrodynamics, 2010, 22(3): 381–386.

    Article  Google Scholar 

  6. SRINIL N. Multi-mode interactions in vortex-induced vibrations of flexible curved/straight structures with geometric nonlinearities[J]. Journal of Fluids and Structures, 2010, 26(7–8): 1098–1122.

    Article  Google Scholar 

  7. REN An-Lu, CHEN Wen-qu and LI Guang-wang. An ALE method and DDM with high accurate compact schemes for vortex-induced vibrations of an elastic circular cylinder[J]. Journal of Hydrodynamics, Ser. B, 2004, 16(6): 708–715.

    MATH  Google Scholar 

  8. DENG Jian, REN An-Lu and CHEN Wen-qu. Numerical simulation of flow-induced vibration on two circular cylinders in tandem arrangment[J]. Journal of Hydrodynamics, Ser. B, 2005, 17(6): 660–666.

    MATH  Google Scholar 

  9. DENG Jian, REN An-Lu and SHAO Xue-ming. The flow between a stationary cylinder and a downstream elastic cylinder in cruciform arrangement[J]. Journal of Fluids and Structures, 2007, 23(5): 715–731.

    Article  Google Scholar 

  10. DAVIS M., DEMETRIOU M. A. and OLINGER D. J. Low order modelling of freely vibrating flexible cables[J]. Flow Turbulence and Combustion, 2003, 71(1–4): 75–91.

    Article  Google Scholar 

  11. VIOLETTE R., De LANGRE E. and SZYDLOWSKI J. Computation of vortex-induced vibrations of long structures using a wake oscillator model: Comparison with DNS and experiments[J]. Computers and Structures, 2007, 85(11–14): 1134–1141.

    Article  Google Scholar 

  12. HUANG K., CHEN H. C. and CHEN C. R. Vertical riser VIV simulation in uniform current[J]. Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme, 2010, 132(3): 031101.

    Google Scholar 

  13. HUERA-HUARTE F. J., BEARMAN P. W. and CHAPLIN J. R. On the force distribution along the axis of a flexible circular cylinder undergoing multi-mode vortex-induced vibrations[J]. Journal of Fluids and Structures, 2006, 22(6–7): 897–903.

    Article  Google Scholar 

  14. MENEGHINI J. R., SALTARA F. and FREGONESI R. D. et al. Numerical simulations of VIV on long flexible cylinders immersed in complex flow fields[J]. European Journal of Mechanics B-Fluids, 2004, 23(1): 51–63.

    Article  Google Scholar 

  15. YAMAMOTO C. T., MENEGHINI J. R. and SALTARA F. et al. Numerical simulations of vortex-induced vibration on flexible cylinders[J]. Journal of Fluids and Structures, 2004, 19(4): 467–489.

    Article  Google Scholar 

  16. LEE L., ALLEN D. Vibration frequency and lock-in bandwidth of tensioned, flexible cylinders experiencing vortex shedding[J]. Journal of Fluids and Structures, 2010, 26(4): 602–610.

    Article  Google Scholar 

  17. EVANGELINOS C., LUCOR D. and KARNIADAKIS G. E. DNS-derived force distribution on flexible cylinders subject to vortex-induced vibration[J]. Journal of Fluids and Structures, 2000, 14(3): 429–440.

    Article  Google Scholar 

  18. BEARMAN P. W., HUERA-HUARTE F. J. The hydrodynamic forces acting on a long flexible circular cylinder responding to VIV[C]. The Proceedings of 6th FSI, AE and FIV and N Symposium. Vancouver, Canada, 2006, 9: 611–619.

    Google Scholar 

  19. WILLDEN RICHARD H. J., GRAHAM J. and MICHAEL R. Multi modal vortex induced vibrations of a vertical riser pipe subject to a uniform current profile[J]. European Journal of Mechanics B/Fluids, 2004, 23(1): 209–218.

    Article  Google Scholar 

  20. EVANGELINOS C., KARNIADAKIS G. E. M. Dynamics and flow structures in the turbulent wake of rigid and flexible cylinders subject to vortex-induced vibrations[J]. Journal of Fluid Mechanics, 1999, 400: 91–124.

    Article  MathSciNet  Google Scholar 

  21. KHALAK A., WILLIAMSON C. H. K. Dynamics of a hydroelastic cylinder with very low mass and damping[J]. Journal of Fluids and Structures, 1996, 10(5): 455–472.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Deng.

Additional information

Project supported by the National Natural Science Foundation of China (Grant No. 10802075).

Biography: XIE Fang-fang (1987-), Female, Ph. D. Candidate

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, Ff., Deng, J. & Zheng, Y. Multi-Mode of Vortex-Induced Vibration of a Flexible Circular Cylinder. J Hydrodyn 23, 483–490 (2011). https://doi.org/10.1016/S1001-6058(10)60139-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(10)60139-4

Key words

Navigation