Skip to main content
Log in

Experimental Investigation of Effect of Tide on Coastal Groundwater Table

  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

In this article, a tide simulation system based on a two-way water pump technique is developed. Using this system and numerical simulations, the groundwater table fluctuation characteristics, relative over height of groundwater table, and influencing factors of over height are investigated. The experimental and numerical results indicate that the groundwater table fluctuation is of periodic, and of asymmetric. The amplitude of groundwater table fluctuations decreases with the increase of the onshore distances. There are phase lags of groundwater table fluctuations for different monitoring points. The tide can bring about remarkable over height of coastal groundwater table. The dominating factors bring about over height include the tide amplitude, aquifer thickness and tide frequency. Under experimental conditions, the relative tide amplitude over height may exceeded 50% of the maximal tide amplitude, and reach about 10% of aquifer thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HAN Long-xi, LI Wei and LU Yong-jun et al. Impact of artificial sand excavation on hydrodynamics and water environment of Dongjiang River network[J]. Journal of Hohai University (Natural Sciences), 2005, 33(2): 123–126(in Chinese).

    Google Scholar 

  2. ZHOU Nian-qing, ZHU Xue-yu and QIAN Jia-zhong et al. The effect of tidal fluctuation on the unconfined aquifer of the site in the third phase of Qinshan nuclear power engineering[J]. Journal of Hydrodynamics, Ser. A, 2002, 17(3): 327–333(in Chinese).

    Google Scholar 

  3. LI Ling, BARRY D. A. and STAGNITTI F. et al. Submarine groundwater discharge and associated chemical input to a coastal sea[J]. Water Resource Research, 1999, 35(11): 3253–3259.

    Article  Google Scholar 

  4. LI Yong, WANG Chao and YANG Lin-zhang et al. Influence of seepage face obliquity on discharge of groundwater and its pollutant into lake from a typical unconfined aquifer[J]. Journal of Hydrodynamics, Ser. B, 2007, 19(6): 756–761.

    Article  Google Scholar 

  5. LI Hai-long, JIAO J. J. Tide-induced seawater groundwater circulation in a mult-layered coastal leaky aquifer system[J]. Journal of Hydrology, 2003, 274(14): 211–224.

    Article  Google Scholar 

  6. LI L., BARRY D. A. and PATTIARATCHI C. B. Numerical modeling of tide-induced beach water table fluctuations[J]. Coastal Engineering, 1997, 30(12): 105–123.

    Article  Google Scholar 

  7. TURNER I. L. Simulating the influence of groundwater seepage on sediment transported by the sweep of the swash zone acrossmacro-tidal beaches[J]. Marine Geology, 1995, 125(12): 153–174.

    Article  Google Scholar 

  8. ATAIE-ASHTIANI B., VOLKER R. E. and LOC-KINGTON D. A. Tidal effects on groundwater dynamics in unconfined aquifers[J]. Hydrological Processes, 2001, 15(4): 655–669.

    Article  Google Scholar 

  9. TEO H. T., JENG D. S. and SEYMOUR B. R. et al. A new analytical solution for water table fluctuations in coastal aquifers with sloping beaches[J]. Advances in Water Resources, 2003, 26(12): 1239–1247.

    Article  Google Scholar 

  10. LI L., BARRY D. A. and STAGNITTI F. et al. Beach water table fluctuations due to spring-neap tides: Moving boundary effects[J]. Advances in Water Resources, 2000, 23(8): 817–824.

    Article  Google Scholar 

  11. SONG Zhi-yao, Li L. and NIELSEN P. et al. Quantification of tidal water table overheight in a coastal unconfined aquifer[J]. Journal of Engineering Mathematics, 2006, 56(4): 437–444.

    Article  MathSciNet  Google Scholar 

  12. ZHUANG Shui-ying, CHEN Juan and LI Ling. Numerical modeling of groundwater table fluctuations due to spring-neap tides in a coastal unconfined aquifer[J]. Journal of Hohai University (Natural Sciences), 2006, 34(1): 10–12(in Chinese).

    Google Scholar 

  13. NIELSEN P., FENTON J. D. and ASEERVATHAM R. A. et al. Water table waves in aquifers of intermediate depths[J]. Advances Water Resources, 1997, 20(1): 37–43.

    Article  Google Scholar 

  14. BAIRD A. J., HORN D. P. Monitoring and modelling groundwater behaviour in sandy beaches[J]. Coastal Research, 1996, 12(3): 630–640.

    Google Scholar 

  15. ZHANG Qian-fei, LAN Shou-qi and WANG Yan-ming et al. A new numerical method for groundwater flow and solute transport using velocity field[J]. Journal of Hydrodynamics, 2008, 20(3): 356–364.

    Article  Google Scholar 

  16. MA Xiu-yuan, LI Shu-guang and ZHU Wei-shen. A new method in groundwater flow modeling[J]. Journal of Hydrodynamics, 2009, 21(2): 245–254.

    Article  Google Scholar 

  17. BAIRD A. J., MASON T. and HORN D. P. Validation of a Boussinesq model of beach groundwater behaviour[J]. Marine Geology, 1998,148(12): 55–69.

    Article  Google Scholar 

  18. JENG D. S., LI L. and BARRY D. A. Analytical solution for tidal propagation in a coupled semi-confined/phreatic coastal aquifer[J]. Advances in Water Resources, 2002, 25(5): 577–584.

    Article  Google Scholar 

  19. LI H. L., JIAO J. J. Analytical solutions of tidal groundwater flow in coastal two-aquifer system[J]. Advances in Water Resources, 2002, 25(4): 417–426.

    Article  Google Scholar 

  20. LI H. L., JIAO J. J. Tidal groundwater level fluctuations in L-shaped leaky coastal aquifer system[J]. Journal of Hydrology, 2002, 268(14): 234–243.

    Article  Google Scholar 

  21. LI L., BARRY D. A. and CUNNINGHAM C. et al. A two-dimensional analytical solution of groundwater responses to tidal loading in an estuary and ocean[J]. Advances in Water Resources, 2000, 23(8): 825–833.

    Article  Google Scholar 

  22. NIELSEN P., ASEERVATHAM R. and FENTON J. D. et al. Groundwater waves in aquifers of intermediate depths[J]. Advances Water Resources, 1997, 20(1): 37–43.

    Article  Google Scholar 

  23. RAUBENHEIMER B., GUZA R. T. and ELGAR S. Tidal water table fluctuations in a sandy beaches[J]. Water Resource Research, 1999, 35(8): 2313–2320.

    Article  Google Scholar 

  24. HU Jian-wei, TANG Huai-ming. The numerical methods for the differential equations[M]. Beijing: Science Press, 1998, 282–289 (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long-hua Wu.

Additional information

Project supported by the Jiangsu Planned Projects for Postdoctoral Research Funds (Grant No. 0701006B).

Biography: WU Long-hua (1974- ), Male, Ph. D., Associate Professor

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Lh., Zhuang, Sy. Experimental Investigation of Effect of Tide on Coastal Groundwater Table. J Hydrodyn 22, 66–72 (2010). https://doi.org/10.1016/S1001-6058(09)60029-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(09)60029-9

Key words

Navigation