Skip to main content
Log in

Simulation of Lagrangian Dispersion Using a Lagrangian Stochastic Model and DNS in a Turbulent Channel Flow

  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

The mean square displacements of fluid particles in a turbulent channel flow at Re τ = 100 are investigated using a modified Langevin equation, and are compared with DNS results. Both the Lagrangian integral time scales directly obtained from DNS and the predicted values using an empirical relation between the Eulerian and the Lagrangian integral time scales are used in the modified Langevin equation to test the effects of integral time scales on the dispersion of particles. The results show that the slight variation of the Lagrangian integral time scale has little influence on the dispersion. The agreement between results of the model equation and those of DNS is satisfactory except the streamwise dispersion for intermediate times (20 < t + < 300), where the results of the model equation are slightly overestimated compared to those of DNS. The cause of such discrepancy is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ILIOPOULOS I., HANRATTY T. J. Turbulent dispersion in a non-homogeneous field[J]. J. Fluid Mech., 1999, 392: 45–71.

    Article  Google Scholar 

  2. MITO Y., HANRATTY T. J. Use of a modified Langevin equation to describe turbulent dispersion of fluid particles in a channel[J]. Flow Turb. and Comb., 2002, 68(1): 1–26.

    Article  Google Scholar 

  3. BOCKSELL T. L., LOTH E. Stochastic modeling of particle diffusion in a turbulent boundary layer[J]. International Journal of Multiphase Flow, 2006, 32(10): 1234–1253.

    Article  Google Scholar 

  4. DEHBI A. A stochastic Langevin model of turbulent particle dispersion in the presence of thermophoresis[J]. International Journal of Multiphase Flow, 2009, 35(3): 219–226.

    Article  Google Scholar 

  5. POZORSKI J., APTE S. V. Filtered particle tracking in isotropic turbulence and stochastic modeling of subgrid-scale dispersion[J]. International Journal of Multiphase Flow, 2009, 35(2): 118–128.

    Article  Google Scholar 

  6. WILSON J. D., SAWFORD B. L. Review of Lagrangian stochastic models for trajectories in the turbulent atmosphere[J]. Boundary Layer Met., 1996, 78(1): 191–210.

    Article  Google Scholar 

  7. POPE S. B. Turbulent flows[M]. Cambridge, UK: Cambridge University Press, 2000.

    Book  Google Scholar 

  8. GIVI B. S. Filtered density function for subgrid modelling of turbulent combustion[J]. AIAA J., 2006, 44(1): 16–23.

    Article  Google Scholar 

  9. ZHANG Jian, NIEH S. Simulation of strongly swirling gas-particle turbulent flows in a vortex tube[J]. Journal of Hydrodynamics, Ser. A, 2000, 15(4): 467–475(in Chinese).

    Google Scholar 

  10. SAWFORD B. L., YEUNG P. K. Lagrangian statistics in uniform shear flow: Direct numerical simulation and Lagrangian stochastic models[J]. Phys. Fluids, 2001, 13(9): 2627–2634.

    Article  Google Scholar 

  11. PLYUKHIN A. V., SCHOFIELD J. Langevin equation for the extended Rayleigh model with an asymmetric bath[J]. Phys. Rev. E, 2004, 69(2): 021112.

    Google Scholar 

  12. REYNOLDS A. M., VENEZIANI M. Rotational dynamics of turbulence and Tsallis statistics[J]. Phys. Lett. A, 2004, 327(1): 9–14.

    Article  Google Scholar 

  13. GUO Yu, CUI Gui-xiang and XU Chun-xiao et al. A stochastic model of heavy particle dispersion in turbulent boundary layer[J]. Chinese Journal of Computational Physics, 2004, 21(6): 515–522(in Chinese).

    Google Scholar 

  14. THORPE A. Recent developments in the study of ocean turbulence[J]. Annu. Rev. Earth Planet Sci., 2004, 32: 91–109.

    Article  Google Scholar 

  15. IACONO G. L., REYNOLDS A. M. A Lagrangian stochastic model for the dispersion and deposition of Brownian particles in the presence of a temperature gradient[J]. J. Aerosol Sci., 2005, 36(10): 1238–1250.

    Article  Google Scholar 

  16. CARVALHO J. C., VILHENA M. T. and THOMPSON M. An iterative Langevin solution for turbulent dispersion in the atmosphere[J]. J. Comp. Applied Math., 2007, 206(1): 534–548.

    Article  MathSciNet  Google Scholar 

  17. HAZA A. C., PITERBARG L. I. and MARTIN P. et al. A Lagrangian subgridscale model for particle transport improvement and application in the Adriatic Sea using the Navy Coastal Ocean Model[J]. Ocean Modelling, 2007, 17(1): 68–91.

    Article  Google Scholar 

  18. LUO J. P., USHIJIMA T. and KITO O. et al. Lagrangian dispersion in turbulent channel flow and its relationship to Eulerian statistics[J]. International Journal of Heat and Fluid Flow, 2007, 28(5): 871–881.

    Article  Google Scholar 

  19. CHOI J. L., YEO K. and LEE C. Lagrangian statistics in turbulent channel flow[J]. Phys. Fluids, 2004, 16: 779–793.

    Article  Google Scholar 

  20. KOELTZSCH K. On the relationship between the Lagrangian and Eulerian time scale[J]. Atmos. Env., 1998, 33(1): 117–128.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-ming Lu.

Additional information

Project supported by the National Natural Science Foundation of China (Grant No.10742005), the Shanghai Pujiang Program (Grant Nos. 06PJ14041, 08PJ1409100).

Biography: LUO Jian-ping (1964-), Female, Ph. D., Associate Professor

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, Jp., Lu, Zm. & Liu, Yl. Simulation of Lagrangian Dispersion Using a Lagrangian Stochastic Model and DNS in a Turbulent Channel Flow. J Hydrodyn 21, 767–773 (2009). https://doi.org/10.1016/S1001-6058(08)60211-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(08)60211-5

Key words

Navigation