Skip to main content
Log in

Numerical Modeling of Wave Evolution and Runup in Shallow Water

  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

Based on the Navier-Stokes (N-S) equations for viscous, incompressible fluid and the VOF method, 2-D and 3-D Numerical Wave Tanks (NWT) for nonlinear shallow water waves are built. The dynamic mesh technique is applied, which can save computational resources dramatically for the simulation of solitary wave propagating at a constant depth. Higher order approximation for cnoidal wave is employed to generate high quality waves. Shoaling and breaking of solitary waves over different slopes are simulated and analyzed systematically. Wave runup on structures is also investigated. The results agree very well with experimental data or analytical solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. LIN P., CHANG K. A. and LIU P. L. F. Runup and rundown of solitary waves on sloping beaches[J]. Journal of Waterway Port Coastal and Ocean Engineering, 1999, 125(5): 247–255.

    Article  Google Scholar 

  2. GUIGNARD S., MARCER R. and REY V. et al. Solitary wave breaking on sloping beaches: 2-D two phase flow numerical simulation by SL-Vof method[J]. European Journal of Mechanics - B/Fluids, 2001, 2 (1): 57–74.

    Google Scholar 

  3. JENSEN A., PEDERSEN G. K. and WOOD D. J. An experimental study of wave run-up at a steep beach[J]. Journal of Fluid Mechanics, 2003, 486: 161–188.

    Article  Google Scholar 

  4. LIU Chang-gen, TAO Jian-hua. Simulation of solitary waves runup and rundown on different breakwaters by using N-S equations[J]. Journal of Hydrodynamics, Ser. A, 2004, 19(4): 484–493(in Chinese).

    Google Scholar 

  5. CHANG K. A., HSU T. J. and LIU P. L. F. Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle: Part II: Cnoidal waves[J]. Coastal Engineering, 2005, 52(3): 257–283.

    Article  Google Scholar 

  6. GUYENNE P., GRILLI S. T. Numerical study of three-dimensional overturning waves in shallow water[J]. Journal of Fluid Mechanics, 2006, 547: 361–388.

    Article  MathSciNet  Google Scholar 

  7. LU Ji, YU Xi-ping. Numerical study of solitary wave fission over an underwater step[J]. Journal of Hydrodynamics, 2008, 20(3): 398–402.

    Article  Google Scholar 

  8. GRILLI S. T., SVENDSEN I. A. and SUBRAMANYA R. Breaking criterion and characteristics for solitary waves on slopes[J]. Journal of Waterway, Port, Coastal and Ocean Engineering, 1997, 123(3): 102–112.

    Article  Google Scholar 

  9. LIU Hua, WU Wei and WANG Ben-long et al. Vertical wall reflection of a fully nonlinear solitary wave[J]. The Ocean Engineering, 2000, 18(1): 1–6(in Chinese).

    Google Scholar 

  10. LI Y., RAICHLEN F. Solitary wave runup on plane slopes[J]. Journal of Waterway, Port, Coastal and Ocean Engineering, 2001, 127(1): 33–44.

    Article  Google Scholar 

  11. LYNETT P. J., WU T. R. and LIU P. L. F. Modeling wave runup with depth-integrated equations[J]. Coastal Engineering, 2002, 46(2): 89–107.

    Article  Google Scholar 

  12. LIN P., LIU P. L. F. A numerical study of breaking waves in the surf zone[J]. Journal of Fluid Mechanics, 1998, 359: 239–264.

    Article  Google Scholar 

  13. CHEN G., KHARIF C. and ZALESKI S. et al. Two-dimensional Navier-Stokes simulation of breaking waves[J]. Physics of Fluids, 1999, 11(1): 121–133.

    Article  Google Scholar 

  14. CHRISTENSEN E. D., DEIGAARD R. Large eddy simulation of breaking waves[J]. Coastal Engineering, 2001, 42(1): 53–86.

    Article  Google Scholar 

  15. LUBIN P., VINCENT S. and ABADIE S. et al. Three-dimensional large eddy simulation of air entrainment under plunging breaking waves[J]. Coastal Engineering, 2006, 53(8): 631–655.

    Article  Google Scholar 

  16. QI Peng, HOU Yi-jun. A VOF-based numerical model for breaking waves in surf zone[J]. Chinese Journal of Oceanology and Limnology, 2006, 24(1): 57–64.

    Article  Google Scholar 

  17. LU Yong-jin, LIU Hua and WU Wei et al. Numerical simulation of two-dimensional overtopping against seawalls armored with artificial units in regular waves[J]. Journal of Hydrodynamics, Ser. B, 2007, 19(3): 322–329.

    Article  Google Scholar 

  18. DONG Zhi, ZHAN Jie-min. Comparison of existing methods for wave generating and absorbing in VOF-based numerical tank[J]. Journal of Hydrodynamics, Ser. A, 2009, 24(1): 15–21(in Chinese).

    Google Scholar 

  19. KANG Hai-gui, ZHANG Hong-wei and QU Xiao-ting. Numerical study of effect of wave around single break-water with the SWAN model[J]. Journal of Hydrodynamics, 2009, 21(1): 136–141.

    Article  Google Scholar 

  20. SARPKAYA T., ISAACSON M. Mechanics of wave forces on offshore structures[M]. New York: Van Nostrand Reinhold, 1981.

    Google Scholar 

  21. LI Y. S., ZHAN J. M. Chebyshev finite-spectral method for 1D Boussinesq-Type equations[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2006, 132(3): 212–223.

    Article  Google Scholar 

  22. LIN P., LIU P. L. F. Internal wave-maker for Navier-Stokes equations models[J]. Journal of Waterway, Port, Coastal and Ocean Engineering, 1999, 125(4): 207–217.

    Article  Google Scholar 

  23. DOMMERMUTH D. G., YUE D. K. P. and LIN W. M. et al. Deep-water plunging breakers: A comparison between potential theory and experiments[J]. Journal of Fluid Mechanics, 1988, 189: 423–442.

    Article  Google Scholar 

  24. DOMMERMUTH D. G., YUE D. K. P. and LIN W. M. et al. Deep-water plunging breakers: A comparison between potential theory and experiments[J]. Journal of Fluid Mechanics, 1988, 189: 423–442.

    Article  Google Scholar 

  25. ISAACSON M. D. S. Wave runup around large circular cylinder[J]. Journal of the Waterway Port Coastal and Ocean Division, 1978, 104(1): 69–79.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie-min Zhan.

Additional information

Biography: DONG Zhi (1982-), Male, Ph. D.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, Z., Zhan, Jm. Numerical Modeling of Wave Evolution and Runup in Shallow Water. J Hydrodyn 21, 731–738 (2009). https://doi.org/10.1016/S1001-6058(08)60207-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(08)60207-3

Key words

Navigation