Skip to main content
Log in

Bubbly shock propagation as a mechanism of shedding in separated cavitating flows

  • Feature Article
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

Stable attached partial cavitation in separated flows can transition to cloud shedding, and the mechanism of transition has been attributed to the presence of a re-entrant liquid jet. Our findings have revealed the presence of propagating bubbly shock waves as an alternative dominant mechanism of shedding when the compressibility of the bubbly mixture is appreciable. In the present paper, we discuss dynamics associated with these bubbly shock waves, interaction of shock waves with obstacles in their path, and means to manipulate their properties to control the shedding process by non-condensable gas injection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Franc J. P., Michel J. M. Fundamentals of cavitation [M]. Dordrecht, The Netherlands: Springer, 2006.

    Google Scholar 

  2. Hutton S. P., Furness S. P. Experimental and theoretical studies of two-dimensional fixed-type cavities [J]. Journal of Fluids Engineering, 1975, 97: 515–522.

    Article  Google Scholar 

  3. Lush P. A., Skipp S. R. High speed cine observations of cavitating flow in a duct [J]. International Journal of Heat and Fluid Flow, 1986, 7 (4): 283–290.

    Article  Google Scholar 

  4. Le Q., Franc J. P., Michel J. M. Partial cavities: Global behavior and mean pressure distribution [J]. Journal of Fluids Engineering, 1993, 115 (3): 243–248.

    Article  Google Scholar 

  5. De Lange D. F., De Bruin G. J. Sheet cavitation and cloud cavitation, re-entrant jet and three-dimensionality [J]. Applied Scientific Research, 1997, 58 (1–4): 191–114.

    Google Scholar 

  6. Callenaere M., Franc J. P., Michel J. M. et al. The cavitation instability induced by the development of a re-entrant jet [J]. Journal of Fluid Mechanics, 2001, 444: 223–256.

    Article  Google Scholar 

  7. Laberteaux K. R., Ceccio S. L. Partial cavity flows. Part 1. Cavities forming on models without spanwise variation [J]. Journal of Fluid Mechanics, 2001, 431: 1–41.

    Article  Google Scholar 

  8. Gopalan S., Katz J. Flow structure and modeling issues in the closure region of attached cavitation [J]. Physics of fluids, 2000, 12 (4): 895–911.

    Article  Google Scholar 

  9. Ganesh H., Mäkiharju S. A., Ceccio S. L. Bubbly shock propagation as a mechanism for sheet-to-cloud transition of partial cavities [J]. Journal of Fluid Mechanics, 2016, 802: 37–78.

    Article  MathSciNet  Google Scholar 

  10. Mäkiharju S. A., Gabillet C., Paik B. et al. Time-resolved two-dimensional X-ray densitometry of a two-phase flow downstream of a ventilated cavity [J]. Experiments in fluids, 2013, 54 (7): 1–21.

    Article  Google Scholar 

  11. Crespo A. Sound and shock waves in liquids containing bubbles [J]. Physics of Fluids, 1969, 12 (11): 2274–2282.

    Article  Google Scholar 

  12. Brennen C. E. Fundamentals of multiphase flow [M]. Cambridge, UK: Cambridge University Press, 2005.

    Book  Google Scholar 

  13. Gnanaskandan A., Mahesh K. Large eddy simulation of the transition from sheet to cloud cavitation over a wedge [J]. International Journal of Multiphase Flow, 2016, 83: 86–102.

    Article  MathSciNet  Google Scholar 

  14. Budich B., Schmidt S., Adams N. A. Numerical investigation of condensation shocks in cavitating flow [C]. Proceedings of the 31st Symposium of Naval Hydrodynamics. Monterey, California, USA, 2016.

    Google Scholar 

  15. Wu X., Etienne M., Chahine G. L. An experimental study of sheet to cloud cavitation [J]. Experimental Thermal and Fluid Science, 2017, 83: 129–140.

    Article  Google Scholar 

  16. Shamsborhan H., Coutier-Delgosha O., Caignaert G. et al. Experimental determination of the speed of sound in cavitating flows [J]. Experiments in Fluids, 2010, 49 (6): 1359–1373.

    Article  Google Scholar 

  17. Tomov P., Khelladi S., Ravelet F. et al. Experimental study of aerated cavitation in a horizontal venturi nozzle [J]. Experimental Thermal and Fluid Science, 2016, 70: 85–95.

    Article  Google Scholar 

  18. Mäkiharju S. A., Ganesh H., Ceccio S. L. The dynamics of partial cavity formation, shedding and the influence of dissolved and injected non-condensable gas [J]. Journal of Fluid Mechanics, 2017, 829: 420–458.

    Article  Google Scholar 

  19. Kawanami Y., Kato H., Yamaguchi H. et al. Mechanism and control of cloud cavitation [J]. Journal of Fluids Engineering, 1997, 119 (4): 788–794.

    Article  Google Scholar 

  20. Ganesh H. Bubbly shock propagation as a cause of sheet to cloud transition of partial cavitation and stationary cavitation bubbles forming on a delta wing vortex [D]. Doctoral Thesis, Ann Arbor, USA: University of Michigan, 2015.

    Google Scholar 

  21. Liepmann H. W., Roshko A. Elements of gasdynamics [R]. Courier Corporation, 1957.

    MATH  Google Scholar 

  22. Ganesh H., Wu J., Ceccio S. L. Investigation of shedding dynamics on NACA0015 hydrofoil using time-resolved X-ray densitometry [C]. Proceedings of the 31st Symposium of Naval Hydrodynamics. Monterey, California, USA, 2016.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven L. Ceccio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganesh, H., Mäkiharju, S. & Ceccio, S. Bubbly shock propagation as a mechanism of shedding in separated cavitating flows. J Hydrodyn 29, 907–916 (2017). https://doi.org/10.1016/S1001-6058(16)60805-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(16)60805-3

Key words

Navigation