Skip to main content
Log in

Modelling of 2-D extended Boussinesq equations using a hybrid numerical scheme

  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

In this paper, a hybrid finite-difference and finite-volume numerical scheme is developed to solve the 2-D Boussinesq equations. The governing equations are the extended version of Madsen and Sorensen’s formulations. The governing equations are firstly rearranged into a conservative form. The finite volume method with the HLLC Riemann solver is used to discretize the flux term while the remaining terms are discretized by using the finite difference method. The fourth order MUSCL-TVD scheme is employed to reconstruct the variables at the left and right states of the cell interface. The time marching is performed by using the explicit second-order MUSCL-Hancock scheme with the adaptive time step. The developed model is validated against various experimental measurements for wave propagation, breaking and runup on three dimensional bathymetries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LAKHAN V. C. Advances in coastal engineering[M]. Boston, USA: Elsevier, 2003, 1–41.

    Google Scholar 

  2. SORENSEN O. R., SCHAFFER H. A. and SORENSEN L. S. Boussinesq-type modelling using an unstructured finite element technique[J]. Coastal Engineering, 2004, 50(4): 181–198.

    Article  Google Scholar 

  3. LI Yok-sheung, ZHAN Jie-min and SU Wei. Cheby-shev finite spectral method for 2-D extended Boussine-sq equations[J]. Journal of Hydrodynamics, 2011, 23(1): 1–11.

    Article  Google Scholar 

  4. WEI G., KIRBY J. T. Time-dependent numerical code for extended boussinesq equations[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1995, 121(5): 251–261.

    Article  Google Scholar 

  5. CHEN Q., KIRBY J. T. and DALRYMPLE R. A. et al. Boussinesq modeling of wave transformation, breaking, and runup. II: 2D[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2000, 126(1): 48–56.

    Article  Google Scholar 

  6. LYNETT P. J. Nearshore wave modeling with high-order Boussinesq-type equations[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2006, 132(5): 348–357.

    Article  Google Scholar 

  7. SHI F., KIRBY J. T. and HARRIS J. C. et al. A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation[J]. Ocean Modelling, 2012, 43–44: 36–51.

    Article  Google Scholar 

  8. ERDURAN K. S., ILIC S. and KUTIJIA V. Hybrid finite-volume finite-difference scheme for the solution of boussinesq equations[J]. International Journal for Numerical Methods in Fluids, 2005, 49(11): 1213–1232.

    Article  MathSciNet  Google Scholar 

  9. CIENFUEGOS R., BARTHELEMY E. and BONNE-TON P. A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations. Part I: Model development and analysis[J]. International Journal for Numerical Methods in Fluids, 2006, 51(11): 1217–1253.

    Article  MathSciNet  Google Scholar 

  10. CIENFUEGOS R. A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations. Part Ii: Boundary conditions and validation[J]. International Journal for Numerical Methods in Fluids, 2007, 53(9): 1423–1455.

    Article  MathSciNet  Google Scholar 

  11. ERDURAN K. S. Further application of hybrid solution to another form of boussinesq equations and comparisons[J]. International Journal for Numerical Methods in Fluids, 2007, 53(5): 827–849.

    Article  MathSciNet  Google Scholar 

  12. SHIACH J. B., MINGHAM C. G. A temporally second-order accurate godunov-type scheme for solving the extended Boussinesq equations[J]. Coastal Engineering, 2009, 56(1): 32–45.

    Article  Google Scholar 

  13. ROEBER V., CHEUNG K. F. and KOBAYASHI M. H. Shock-capturing Boussinesq-type model for nearshore wave processes[J]. Coastal Engineering, 2010, 57(4): 407–423.

    Article  Google Scholar 

  14. TONELLI M., PETTI M. Finite volume scheme for the solution of 2D extended Boussinesq equations in the surf zone[J]. Ocean Engineering, 2010, 37(7): 567–582.

    Article  Google Scholar 

  15. ORSZAGHOVA J., BORTHWICK A. G. L. and TAYLOR P. H. From the paddle to the beach-a Boussinesq shallow water numerical wave tank based on madsen and Sørensen’s equations[J]. Journal of Computational Physics, 2012, 231(2): 328–344.

    Article  MathSciNet  Google Scholar 

  16. ROEBER V., CHEUNG K. F. Boussinesq-type model for energetic breaking waves in fringing reef enviro-nments[J]. Coastal Engineering, 2012, 70: 1–20.

    Article  Google Scholar 

  17. TORO E. F. Riemann solvers and numerical methods for fluid dynamics, a pratical introduction[M]. Dordrecht, Heidelberg, London, New York: Springer, 2009.

    Book  Google Scholar 

  18. KIM G., LEE C. and SUH K.-D. Extended Boussinesq equations for rapidly varying topography[J]. Ocean Engineering, 2009, 36(11): 842–851.

    Article  Google Scholar 

  19. MADSEN P. A., SORENSEN S. R. A new form of the Boussinesq equations with improved linear dispersion characteristics. Part 2. A slowly-varying bathymetry[J]. Coastal Engineering, 1992, 18(3–4): 183–204.

    Article  Google Scholar 

  20. HARTEN A., ENGQUIST B. and OSHER S. et al. Uniformly high order accurate essentially non-oscillatory schemes, III[J]. Journal of Computational Physics, 1997, 131(1): 3–47.

    Article  Google Scholar 

  21. BERKHOFF J. C. W., BOOY N. and RADDER A. C. Verification of numerical wave propagation models for simple harmonic linear waves[J]. Coastal Engineering, 1982, 6(3): 255–379.

    Article  Google Scholar 

  22. BRIGGS M. J., SYNOLAKIS C. E. and HARKINS G. S., et al. Laboratory experiments of tsunami runup on a circular island[J]. Pageoph, 1995, 144(3–4): 569–593.

    Article  Google Scholar 

  23. SWIGLE D. T. Laboratory study of the three-dimensional turbulence and kinematic properties associated with a breaking solitarywave[D]. Master Thesis, Texas, USA: Texas A&M University, 2009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-zhao Fang  (房克照).

Additional information

Project supported by the National Natural Science Foundation of China (Grant Nos. 51009018, 51079042).

Biography: FANG Ke-zhao (1980-), Male, Ph. D., Lecturer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, Kz., Zhang, Z., Zou, Zl. et al. Modelling of 2-D extended Boussinesq equations using a hybrid numerical scheme. J Hydrodyn 26, 187–198 (2014). https://doi.org/10.1016/S1001-6058(14)60021-4

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(14)60021-4

Key words

Navigation