Skip to main content
Log in

Molecular Dynamics Simulation on Hydrogen Ion Implantation Process in Smart-Cut Technology

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

The hydrogen ion implantation process in Smart-Cut technology is investigated in the present paper using molecular dynamics (MD) simulations. This work focuses on the effects of the implantation energy, dose of hydrogen ions and implantation temperature on the distribution of hydrogen ions and defect rate induced by ion implantation. Numerical analysis shows that implanted hydrogen ions follow an approximate Gaussian distribution which mainly depends on the implantation energy and is independent of the hydrogen ion dose and implantation temperature. By introducing a new parameter of defect rate, the influence of the processing parameters on defect rate is also quantitatively examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bruel, M., Silicon on insulator material technology. Electronics Letters, 1995, 31(14): 1201–1202.

    Article  Google Scholar 

  2. Bruel, M., Application of hydrogen ion beams to silicon on insulator material technology. Nuclear Instruments and Methods in Physical Research Section B, 1996, 108(3): 313–319.

    Article  Google Scholar 

  3. Aspar, B., Bruel, M., Moriceau, H., Maleville, C., PouneyroI, T. and Papon, A.M., Basic mechanisms involved in the Smart-Cut process. Microelectronic Engineering, 1997, 36: 233–240.

    Article  Google Scholar 

  4. Höchbauer, T., Misra, A., Nastasi, M. and Mayer, J.W., Physical mechanisms behind the ion-cut in hydrogen implanted silicon. Journal of Applied Physics, 2002, 92(5): 2335–2342.

    Article  Google Scholar 

  5. Maleville, C., Aspar, B., Poumeyrol, T., Moriceaua, H., Bruela, M., Auberton-Hervèb, A.J. and Bargeb, T., Wafer bonding and H-implantation mechanisms involved in the Smart- Cut® technology. Materials Science and Engineering B, 1997, 46(1): 14–19.

    Article  Google Scholar 

  6. Varma, C.M., Hydrogen-implant induced exfoliation of silicon and other crystals. Applied Physics Letters, 1997, 71(24): 3519–3521.

    Article  Google Scholar 

  7. Wang, J., Xiao, Q.H., Tu, H.L., Shao, B.L. and Liu, A.S., Microstructure evolution of hydrogen-implanted silicon during the annealing process. Microelectronic Engineering, 2003, 66(1): 314–319.

    Article  Google Scholar 

  8. Zheng, Y., Lau, S.S., Höchbauer, T., Misra, A., Verda, R., He, X.M., Nastasi, M. and Mayer, J.W., Orientation dependence of blistering in H-implanted Si. Journal of Applied Physics, 2001, 89(5): 2972–2978.

    Article  Google Scholar 

  9. Aspar, B. et al., The generic nature of the Smart- Cut® process for thin film transfer. Journal of Electronic Materials, 2001, 30(7): 834–840.

    Article  Google Scholar 

  10. Hochbauert, T., Misra, A., Verda, R., Nastasi, M., Mayerb, J.W., Zheng, Y. and Lau, S.S., Hydrogen-implantation induced silicon surface layer exfoliation. Philosophical Magazine B, 2000, 80(11): 1921–1931.

    Article  Google Scholar 

  11. Grisolia, J., Cristiano, F., Ben Assayag, G. and Claverie, A., Kinetic aspects of the growth of platelets and voids in H implanted Si. Nuclear Instruments and Methods in Physical Research Section B, 2001, 178(1–4): 160–164.

    Article  Google Scholar 

  12. Nguyen, P., Cayrefourcq, I., Bourdelle, K.K., Boussagol, A., Guiot, E., Ben Mohamed, N., Sousbie, N. and Akatsu, T., Mechanism of the Smart-Cut™ layer transfer in silicon by hydrogen and helium coimplantation in the medium dose range. Journal of Applied Physics, 2005, 97(8): 083527-083527-5.

    Article  Google Scholar 

  13. Gaudin, G., Cayrel, F., Bongiorno, C., Jérisiana, R., Duboisc, C., Rainerib, V. and Alquiera, D., Boron interaction with extended defects induced by He-H co-implantation in Si. Materials Science and Engineering B, 2005, 124(23): 266–270.

    Article  Google Scholar 

  14. Webb, M., Jeynes, C., Gwilliam, R.M., Tabatabaian, Z., Royle, A. and Sealy, B.J., The influence of the ion implantation temperature and the flux on Smart-Cut© in GaAs. Nuclear Instruments and Methods in Physical Research Section B, 2005, 237: 193–196.

    Article  Google Scholar 

  15. Webb, M., Jeynes, C., Gwilliam, R., Too, P., Kozanecki, A., Domagala, J., Royle, A. and Sealy, B., The influence of the ion implantation temperature and the dose rate on mart-cut© in GaAs. Nuclear Instruments and Methods in Physical Research Section B, 2005, 240(1): 142–145.

    Article  Google Scholar 

  16. Freund, L.B., A lower bound on implant density to induce wafer splitting in forming compliant substrate structures. Applied Physics Letters, 1997, 70(26): 3519–3521.

    Article  Google Scholar 

  17. Feng, X.Q. and Huang, Y., Mechanics of Smart-Cut technology. International Journal of Solids and Structures, 2004, 41(16): 4299–4320.

    Article  Google Scholar 

  18. Xu, M. and Feng, X.Q., Defect nucleation in SOI wafers due to hydrogen ion implantation. Theoretical and Applied Fracture Mechanics, 2004, 42(3): 295–301.

    Article  Google Scholar 

  19. Gu, B., Liu, H.Y., Mai, Y.W., Feng, X.Q. and Yu, S.W., Fracture mechanics analysis on Smart-Cut® technology—Part 1: Effects of stiffening wafer and defect interaction. Acta Mechanica Sinica, 2009, 25(1): 73–81.

    Article  Google Scholar 

  20. Gu, B., Yuan, W.F., Ning, Y.J. and Song, D.L., The effect of bonding flaws on the splitting process in the Smart-Cut technology. Materials Science Forum, 2013, 762: 437–444.

    Article  Google Scholar 

  21. Gu, B., Liu, H.Y., Mai, Y.W., Feng, X.Q. and Yu, S.W., Fracture mechanics analysis of the effects of temperature and material mismatch on the Smart- Cut® technology. Engineering Fracture Mechanics, 2008, 75(17): 4996–5006.

    Article  Google Scholar 

  22. Wang, B., Gu, B., Pan, R.Y., Zhang, S.J. and Sheng, J.H., Molecular dynamics study of hydrogen induced silicon surface layer split mechanism in Smart-Cut technology. Journal of Semiconductors, 2015, 36(3): 036003–6.

    Article  Google Scholar 

  23. Tersoff, J., Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Physical Review B, 1989, 39(8): 5566.

    Google Scholar 

  24. Ohira, T., Ukai, O. and Noda, M., Fundamental processes of microcrystalline silicon film growth: a molecular dynamics study. Surface Science, 2000, 458(1): 216–228.

    Article  Google Scholar 

  25. Murty, M.V.R. and Atwater, H.A., Empirical interatomic potential for Si-H interactions. Physical Review B, 1995, 51(8): 4889–4893.

    Article  Google Scholar 

  26. Grippo, L. and Lucidi, S., A globally convergent version of the Polak-Ribiere conjugate gradient method. Mathematical Programming, 1997, 78(3): 375–391.

    Article  MathSciNet  Google Scholar 

  27. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A. and Haak, J.R., Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 1984, 81(8): 3684–3690.

    Article  Google Scholar 

  28. Plimpton, S., Crozier, P. and Thompson, A., LAMMPS-large-scale atomic/molecular massively parallel simulator. Sandia National Laboratories, 2007: 18.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Gu.

Additional information

Project supported by the National Natural Science Foundation of China (No. 11372261), the Excellent Young Scientists Supporting Project of Science and Technology Department of Sichuan Province (No. 2013JQ0030), the Supporting Project of Department of Education of Sichuan Province (No. 2014zd3132), the Opening Project of Key Laboratory of Testing Technology for Manufacturing Process, Southwest University of Science and Technology-Ministry of Education (No. 12zxzk02), the Fund of Doctoral Research of Southwest University of Science and Technology (No. 12zx7106) and the Postgraduate Innovation Fund Project of Southwest University of Science and Technology (No. 14ycxjj0121).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Gu, B., Zhang, H. et al. Molecular Dynamics Simulation on Hydrogen Ion Implantation Process in Smart-Cut Technology. Acta Mech. Solida Sin. 29, 111–119 (2016). https://doi.org/10.1016/S0894-9166(16)30100-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0894-9166(16)30100-8

Key Words

Navigation