Skip to main content
Log in

Dynamic Stability Analysis of Embedded Multi-Walled Carbon Nanotubes in Thermal Environment

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

In the present paper, the dynamic stability of multi-walled carbon nanotubes (MW-CNTs) embedded in an elastic medium is investigated including thermal environment effects. To this end, a nonlocal Timoshenko beam model is developed which captures small scale effects. Dynamic governing equations of the carbon nanotubes are formulated based on the Timoshenko beam theory including the effects of axial compressive force. Then a parametric study is conducted to investigate the influences of static load factor, temperature change, nonlocal parameter, slenderness ratio and spring constant of the elastic medium on the dynamic stability characteristics of MWCNTs with simply-supported end supports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima, S., Helical microtubes of graphite carbon. Nature, 1991, 354: 56–58.

    Article  Google Scholar 

  2. Treacy, M.M.J., Ebbesen, T.W. and Gibson, J.M., Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature, 1996, 381: 678–680.

    Article  Google Scholar 

  3. Krishnan, A., Dujardin, E., Ebbesen, T.W., Yianiolos, P.N. and Treacy, M.M.J., Young’s modulus of single-walled carbon nanotubes. Physical Review B, 1998, 58(20): 14013–14019.

    Article  Google Scholar 

  4. Demczyk, B.G., Wang, Y.M., Cumings, J., Hetman, M., Han, W., Zettl, A. and Ritchie, R.O., Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Materials Science and Engineering A, 2002, 334(1–2): 173–178.

    Article  Google Scholar 

  5. Ke, C.H., Pugno, N., Peng, B. and Espinosa, H.D., Experiments and modeling of carbon nanotube-based NEMS devices. Journal of the Mechanics and Physics of Solids, 2005, 53(6): 1314–1333.

    Article  MATH  Google Scholar 

  6. Eringen, A.C., Nonlocal polar elastic continua. International Journal of Engineering Science, 1972, 1: 1–16.

    Article  MathSciNet  MATH  Google Scholar 

  7. Eringen, A.C. and Edelen, D.G.B., On nonlocal elasticity. International Journal of Engineering Science, 1972, 1: 233–248.

    Article  MathSciNet  MATH  Google Scholar 

  8. Peddieson, J., Buchanan, G.R. and McNitt, R.P., Application of nonlocal continuum models to nanotechnology. International Journal of Engineering Science, 2003, 41(3–5): 305–312.

    Article  Google Scholar 

  9. Wang, Q., Varadan, V.K. and Quek, S.T., Small scale effect on elastic buckling of carbon nanotubes with nonlocal continuum models. Physics Letters A, 2006, 357(2): 130–135.

    Article  Google Scholar 

  10. Artan, R. and Tepe, A., The initial values method for buckling of nonlocal bars with application in nanotechnology. European Journal of Mechanics—A/Solids, 2008, 27(3): 469–477.

    Article  MATH  Google Scholar 

  11. Amara, K., Tounsi, A., Mechab, I. and Adda-Bedia, E.A., Nonlocal elasticity effect on column buckling of multiwalled carbon nanotubes under temperature field. Applied Mathematical Modelling, 2010, 34(12): 3933–3942.

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang, Y.Q., Liu, G.R. and Han, X., Effect of small length scale on elastic buckling of multi-walled carbon nanotubes under radial pressure. Physics Letters A, 2006, 349(5): 370–376.

    Article  Google Scholar 

  13. Yang, J., Ke, L.L. and Kitipornchai, S., Nonlinear free vibration of single-walled carbon nanotubes using nonlocal timoshenko beam theory. Physica E, 2010, 42(5): 1727–1735.

    Article  Google Scholar 

  14. Ansari, R., Rajabiehfard, R. and Arash, B., Nonlocal finite element model for vibrations of multi-layered graphene sheets. Computational Materials Science, 2010, 49(4): 831–838.

    Article  Google Scholar 

  15. Hu, Y.G., Liew, K.M., Wang, Q., He, X.Q. and Yakobson, B.I., Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes. Journal of Mechanics and Physics of Solids, 2008, 56(12): 3475–3485.

    Article  MATH  Google Scholar 

  16. Adali, S., Variational principles for multi-walled carbon nanotubes undergoing buckling based on nonlocal elasticity theory. Physics Letters A , 2008, 372(35): 5701–5705.

    Article  MATH  Google Scholar 

  17. Ke, L.L., Xiang, Y., Yang, J. and Kitipornchai, S., Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory. Computational Materials Science, 2009, 47(2): 409–417.

    Article  Google Scholar 

  18. Ansari, R., Sahmani, S. and Arash, B., Nonlocal plate model for free vibrations of single-layered graphene sheets. Physics Letters A, 2010, 375: 53–62.

    Article  Google Scholar 

  19. Kiani, K., A Meshless approach for free transverse vibration of embedded single-walled nanotubes with arbitrary boundary conditions accounting for nonlocal effect. International Journal of Mechanical Sciences, 2010, 52(10): 1343–1356.

    Article  Google Scholar 

  20. Heireche, H., Tounsi, A., Benzair, A., Maachou, M. and Adda-Bedia, E.A., Sound wave propagation in single-walled carbon nanotubes using nonlocal elasticity. Physica E, 2008, 40(8): 2791–2799.

    Article  Google Scholar 

  21. Lu, P., Lee, H.P., Lu, C. and Zhang, P.Q., Application of nonlocal beam models for carbon nanotubes. International Journal of Solids and Structures, 2007, 44(16): 5289–5300.

    Article  MATH  Google Scholar 

  22. Ansari, R., Sahmani, S. and Rouhi, H., Rayleigh-ritz axial buckling analysis of single-walled carbon nanotubes with different boundary conditions. Physics Letters A, 2011, 375: 1255–1263.

    Article  Google Scholar 

  23. Roostai, H. and Haghpanahi, M., Transverse vibration of a hanging nonuniform nanoscale tube based on nonlocal elasticity theory with surface effect. Acta Mechanica Solida Sinica, 2014, 27(2): 202–209.

    Article  Google Scholar 

  24. Soltani, P., Kassaei, A. and Taherian, M.M., Nonlinear and quasi-linear behavior of a curved carbon nanotube vibrating in an electric force field; Analytical approach. Acta Mechanica Solida Sinica, 2014, 27(1): 202–209.

    Article  Google Scholar 

  25. Patel, A.M. and Joshi, A.Y., Investigating the influence of surface deviations in double walled carbon nanotube based nanomechanical sensors. Computational Materials Science , 2014, 89: 157–164.

    Article  Google Scholar 

  26. Arda, M. and Aydogdu, M., Torsional statics and dynamics of nanotubes embedded in an elastic medium. Composite Structures, 2014, 114: 80–91.

    Article  Google Scholar 

  27. Hsu, J.C., Chang, R.P. and Chang, W.J., Resonance frequency of chiral single-walled carbon nanotubes using Timoshenko beam theory. Physics Letters A, 2008, 372: 2757–2759.

    Article  MATH  Google Scholar 

  28. Ni, B., Sinnott, S.B., Mikulski, P.T. and Harrison, J.A., Compression of carbon nanotubes filled with C60, CH4, or Ne: predictions from molecular dynamics simulation. Physics Review Letters, 2002, 88: 205505–1.

    Article  Google Scholar 

  29. Li, R. and Kardomateas, G.A., Thermal buckling of multi-walled carbon nanotubes by nonlocal elasticity. Journal of Applied Physics, 2007, 74: 399–405.

    MATH  Google Scholar 

  30. Zhang, Y.Q., Liu, X. and Zhao, J.H., Influence of temperature change on column buckling of multiwalled carbon nanotubes. Physics Letters A, 2008, 372: 1676–1681.

    Article  MATH  Google Scholar 

  31. Ansari, R., Sahmani, S. and Rouhi, H., Axial buckling analysis of single-walled carbon nanotubes in thermal environments via the Rayleigh-Ritz technique. Computational Materials Science, 2011, 50: 3050–3055.

    Article  Google Scholar 

  32. Ansari, R., Gholami, R. and Sahmani, S., Prediction of compressive post-buckling behavior of single-walled carbon nanotubes in thermal environments. Applied Physics A, 2013, 113: 145–153.

    Article  Google Scholar 

  33. Nayfeh, A.H., Nonlinear Oscillation. Wiley, New York, United States of America, 1979.

    Google Scholar 

  34. Ansari, R. and Ramezannezhad, H., Nonlocal timoshenko beam model for the large-amplitude vibrations of embedded multiwalled carbon nanotubes including thermal effects. Physica E, 2011, 43: 1171–1178.

    Article  Google Scholar 

  35. He, X.Q., Kitipornchaia, S. and Liew, K.M., Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction. Journal of Mechanics and Physics of Solids, 2005, 53: 303–326.

    Article  MATH  Google Scholar 

  36. Pasternak, P.L., On a new method of analysis of an elastic foundation by means of two foundation constants, Gosudarstvennoe Izdatelstvo Literaturipo Stroitelstvui Arkhitekture, Moscow (in Russian), 1954.

  37. Kim, N-I., Fu, C.C. and Kim, M.Y., Dynamic stiffness matrix of non-symmetric thin-walled curved beam on Winkler and Pasternak type foundations. Advances in Engineering Software, 2007, 38: 158–171.

    Article  Google Scholar 

  38. Bolotin, V.V., The Dynamic Stability of Elastic Systems. San Francisco, Holden-Day, 1964.

    MATH  Google Scholar 

  39. Wang, L., Ni, Q., Li, M. and Qian, Q., The thermal effect on vibration and instability of carbon nanotubes conveying fluid. Physica E, 2008, 40: 3179–3182.

    Article  Google Scholar 

  40. Hemmatnezhad, M., Ansari, R. and Rezapour, J., The thermal effect on nonlinear oscillations of carbon nanotubes with arbitrary boundary conditions. Current Applied Physics, 2011, 11: 692–697.

    Article  Google Scholar 

  41. Ansari, R., Ramezannezhad, H. and Gholami, R., Nonlocal beam theory for nonlinear vibrations of embedded multiwalled carbon nanotubes in thermal environment. Nonlinear Dynamics, 2012, 67: 2241–2254.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Gholami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, R., Gholami, R., Sahmani, S. et al. Dynamic Stability Analysis of Embedded Multi-Walled Carbon Nanotubes in Thermal Environment. Acta Mech. Solida Sin. 28, 659–667 (2015). https://doi.org/10.1016/S0894-9166(16)30007-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0894-9166(16)30007-6

Key Words

Navigation