Skip to main content
Log in

A Wedge Disclination Dipole Interacting with a Coated Cylindrical Inhomogeneity

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

A three-phase composite cylinder model is utilized to study the interaction of a wedge disclination dipole with a coated cylindrical inhomogeneity. The explicit expression of the force acting on the wedge disclination dipole is calculated. The motilities and the equilibrium positions of the disclination dipole near the coated inhomogeneity are discussed for various material combinations, relative thicknesses of the coating layer and the features of the disclination dipole. The results show that the material properties of the coating layer have a major part to play in alteringi the strengthening effect or toughening effect produced by the coated inhomogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Romanov, A.E. and Kolesnikova, A.L., Application of disclination concept to solid structures. Progress in Materials Science, 2009, 54(6): 740–769.

    Article  Google Scholar 

  2. Romanov, A.E. and Vladimirov, V.I., Dislocations in Solids. Nabarro, F.R.N., Ed., North-Holland: Amsterdam, 1992.

    Google Scholar 

  3. Romanov, A.E., Screened disclinations in solids. Materials Science and Engineering A, 1993, 164(1–2): 58–68.

    Article  Google Scholar 

  4. Murayama, M., Howe, J.M., Hidaka, H. and Takaki, S., Atomic-level observation of disclination dipoles in mechanically milled, nanocrystalline Fe. Science, 2002, 295(5564): 2433–2435.

    Article  Google Scholar 

  5. Lei, R.S., Wang, M.P., Li, Z. and Wei, H.G., Disclination dipoles observation and nanocrystallization mechanism in ball milled Cu-Nb powders. Materials Letters, 2011, 65(19–20): 3044–3046.

    Article  Google Scholar 

  6. Jiang, X. and Jia, C.L., The coalescence of [001] diamond grains heteroepitaxially grown on (001) silicon. Applied Physics Letters, 1996, 69(25): 3902–3094.

    Article  Google Scholar 

  7. Yacamán, M.J., Ascencio, J.A., Liu, H.B. and Gardea-Torresdey, J., Structure shape and stability of nano-metric sized particles. Journal of Vacuum Science & Technology B, 2001, 19(4): 1091–1103.

    Article  Google Scholar 

  8. Ovid’ko, I.A., Deformation of nanostructures. Science, 2002, 295(5564): 2386.

    Article  Google Scholar 

  9. Morozov, N.F., Ovid’ko, I.A., Sheinerman, A.G. and Aifantis, E.C., Special rotational deformation as a toughening mechanism in nanocrystalline solids. Journal of the Mechanics and Physics of Solids, 2010, 58(8): 1088–1099.

    Article  Google Scholar 

  10. Zhao, Y.X., Fang, Q.H., Liu, Y.W. and Jiang, C.Z., Shielding effects of disclinations on the elliptical blunt crack. International Journal of Engineering Science, 2013, 70: 91–101.

    Article  MathSciNet  Google Scholar 

  11. Zhao, Y.X., Fang, Q.H. and Liu, Y.W., Effect of cooperative nanograin boundary sliding and migration on dislocation emission from a blunt nanocrack tip in nanocrystalline materials. Philosophical Magazine, 2014, 94(7): 700–730.

    Article  Google Scholar 

  12. Gryaznov, V.G., Gutkin, M.Yu., Romanov, A.E. and Trusov, L.I., On the yield stress of nanocrystals. Journal of Materials Science, 1993, 28(16): 4359–4365.

    Article  Google Scholar 

  13. Romanov, A.E., Mechanics and physics of disclinations in solids. European Journal of Mechanics - A/Solids, 2003, 22(5): 727–741.

    Article  MathSciNet  Google Scholar 

  14. Rybin, V.V. and Zhukovskii, I.M., Disclination mechanism of microcrack formation. Soviet Physics. Solid State, 1978, 20(2): 1056–1059.

    Google Scholar 

  15. Wu, M.S., Zhou, K. and Nazarov, A.A., Crack nucleation at disclinated triple junctions. Physical Review B, 2007, 76(13): 134105.

    Article  Google Scholar 

  16. Gutkin, M.Yu. and Ovid’ko, I.A., Disclinations, amorphization and microcrack generation at grain boundary junctions in polycrystalline solids. Philosophical Magazine A, 1994, 70(4): 561–575.

    Article  Google Scholar 

  17. Bobylev, S.V. and Ovid’ko, I.A., Nanoscale amorphization at disclination quadrupoles in deformed nano-materials and polycrystals. Applied Physics Letters, 2008, 93(6): 061904.

    Article  Google Scholar 

  18. Zhou, K., Nazarov, A.A. and Wu, M.S., Atomistic simulations of the tensile strength of a disclinated bicrystalline nanofilm. Philosophical Magazine, 2008, 88(27): 3181–3191.

    Article  Google Scholar 

  19. Luo, J. and Liu, F., Stress analysis of a wedge disclination dipole interacting with a circular nanoinhomogeneity. European Journal of Mechanics - A/Solids, 2011, 30(1): 22–32.

    Article  Google Scholar 

  20. Zhou, K., Hoh, H.J., Wang, X., Keer, L.M., Pang, H.J.L., Song, B. and Wang, Q.J., A review of recent works on inclusions. Mechanics of Materials, 2013, 60: 144–158.

    Article  Google Scholar 

  21. Chen, C.Q., Cui, J.Z., Duan, H.L., Feng, X.Q., et al., Perspectives in mechanics of heterogeneous solids. Acta Mechanica Solida Sinica, 2011, 24(1): 1–26.

    Article  Google Scholar 

  22. Wang, X. and Shen, Y.P., Arc interface crack in a three-phase piezoelectric composite constitutive model. Acta Mechanica Solida Sinica, 2001, 14(2): 104–117.

    Google Scholar 

  23. Wang, X. and Shen, Y.P., An edge dislocation in a three-phase composite cylinder model with a sliding interface. Journal of Applied Mechanics, 2002, 69(4): 527–538.

    Article  Google Scholar 

  24. Liu, Y.W., Fang, Q.H. and Jiang, C.P., A piezoelectric screw dislocation interacting with an interphase layer between a circular inclusion and the matrix. International Journal of Solids and Structures, 2004, 41(11–12): 3255–3274.

    Article  Google Scholar 

  25. Fang, Q.H., Liu, Y.W. and Wen, P.H., Screw dislocations in a three-phase composite cylinder model with interface stress. Journal of Applied Mechanics, 2008, 75(4): 041019.

    Article  Google Scholar 

  26. Gong, K.Z., Li, Z. and Qin, W.Z., Influence of loading rate on dynamic fracture behavior of fiber-reinforced composites. Acta Mechanica Solida Sinica, 2008, 21(5): 457–460.

    Article  Google Scholar 

  27. Wang, X., Sudak, L.J. and Pan, E., Pattern instability of functionally graded and layered elastic films under van der Waals forces. Acta Mechanica, 2008, 198(1–2): 65–86.

    Article  Google Scholar 

  28. Fang, Q.H., Liu, Y.W., Jin, B. and Wen, P.H., A piezoelectric screw dislocation in a three-phase composite cylinder model with an imperfect interface. International Journal of Engineering Science, 2009, 47(1): 39–49.

    Article  MathSciNet  Google Scholar 

  29. Wang, F., Zeng, X.G. and Zhang, J.Q., Predictive approach to failure of composite laminates with equivalent constraint model. Acta Mechanica Solida Sinica, 2010, 23(3): 240–247.

    Article  Google Scholar 

  30. Zhou, Z.G., Zhang, P.W. and Wu, L.Z., Multiple parallel symmetric permeable model-Ill cracks in a piezo-electric_piezomagnetic composite material plane. Acta Mechanica Solida Sinica, 2010, 23(4): 336–352.

    Article  Google Scholar 

  31. Wang, X. and Zhou, K., Novel near-cloaking multicoated structures for screw dislocations. Mechanics of Materials, 2012, 55: 73–81.

    Article  Google Scholar 

  32. Wang, X. and Zhou, K., Three-phase piezoelectric inclusions of arbitrary shape with internal uniform electroelastic field. International Journal of Engineering Science, 2013, 63: 23–29.

    Article  MathSciNet  Google Scholar 

  33. Wang, X. and Zhou, K., Long-range interaction of a line dislocation with multiple multicoated inclusions of arbitrary shape. Acta Mechanica, 2013, 224(1): 63–70.

    Article  MathSciNet  Google Scholar 

  34. Valiev, R.Z., Islamgaliev, R.K. and Alexandrov, I.V., Bulk nanostructured materials from severe plastic deformation. Progress in Materials Science, 2000, 45(2): 103–189.

    Article  Google Scholar 

  35. Zhou, K., Nazarov, A.A. and Wu, M.S., Competing relaxation mechanisms in a disclinated nanowire: temperature and size effects. Physical Review Letters, 2007, 98(3): 035501.

  36. Wang, T., Luo, J., Xiao, Z.M. and Chen, J.Q., On the nucleation of a Zener crack from a wedge disclination dipole in the presence of a circular inhomogeneity. European Journal of Mechanics - A/Solids, 2009, 28(4): 688–696.

    Article  Google Scholar 

  37. Muskhelishvili, N.I., Some Basic Problems of Mathematical Theory of Elasticity. Leyden: Noordhoff, 1975.

    MATH  Google Scholar 

  38. England, A.H., Complex Variable Method in Elasticity. New York: John Wiley and Sons, 1971.

    MATH  Google Scholar 

  39. Luo, H.A. and Chen, Y.J., An edge dislocation in a three-phase composite cylinder model. Journal of Applied Mechanics, 1991, 58(1): 75–86.

    Article  Google Scholar 

  40. Peach, M. and Koehler, J.S., The forces exerted on dislocations and the stress fields produced by them. Physical Review, 1950, 80(3): 436–439.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youwen Liu.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11172094 and 11172095), the New Century Excellent Talents in University (NCET-11-0122) and Hunan Provincial Natural Science Foundation for Creative Research Groups of China (No. 12JJ7001).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Fang, Q. & Liu, Y. A Wedge Disclination Dipole Interacting with a Coated Cylindrical Inhomogeneity. Acta Mech. Solida Sin. 28, 62–73 (2015). https://doi.org/10.1016/S0894-9166(15)60016-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0894-9166(15)60016-7

Key Words

Navigation