Skip to main content
Log in

Effects of Different Functionalization Schemes on the Interfacial Strength of Carbon Nanotube Polyethylene Composite

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

The mechanical performance of carbon nanotube (CNT) reinforced polymer composites is primarily controlled by the dispersive capacity and interfacial shear strength of CNTs in polymer matrices. CNT functionalizations will improve dispersion and strengthen interfacial bonding of CNTs in matrices. To understand the effects of different functionalization schemes on the interfacial strength of CNT-polymer composites, pullout of the covalent, noncovalent, and mixed functionalized single-walled carbon nanotube (SWCNT) from polyethylene (PE) matrix was simulated by using molecular dynamics, respectively. The results show that the SWCNT-PE interfacial shear strength is significantly improved by SWCNT functionalizations, particularly by mixed functionalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Calvert, P., Nanotube composites: a recipe for strength. Nature, 1999, 399: 210–211.

    Article  Google Scholar 

  2. Gojny, F.H., Nastalczyk, J., Roslamiec, Z. and Schulte, K., Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites. Chemical Physics Letters, 2003, 370: 820–824.

    Article  Google Scholar 

  3. Zhu, J., Kim, J.D., Peng, H.Q., Margrave, J.L., Khabashesku, V.N. and Barrera, E.V., Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. Nano Letters, 2003, 3: 1107–1113.

    Article  Google Scholar 

  4. Jin, L., Bower, B. and Zhou, O., Alignment of carbon nanotubes in a polymer matrix by mechanical stretching. Applied Physics Letters, 1998, 73: 1197–1199.

    Article  Google Scholar 

  5. Schadler, L.S., Giannaris, S.C. and Ajayan, P.M., Load transfer in carbon nanotube epoxy composites. Applied Physics Letters, 1998, 73: 3842–3844.

    Article  Google Scholar 

  6. Sinnott, S.B., Chemical functionalization of carbon nanotubes. Journal of Nanoscience and Nanotechnology, 2002, 2: 113–123.

    Article  Google Scholar 

  7. Li, X.D., Gao, H.S., Scrivens, W.A., Fei, D.L., Xu, X.Y., Sutton, M.A., Reynolds, A.P. and Myrich, M.L., Nanomechanical characterization of single-walled carbon nanotube reinforced epoxy composites. Nanotechnology, 2004, 15: 1416–1423.

    Article  Google Scholar 

  8. Ajayan, P.M., Schadler, L.S., Giannaris, C. and Rubio, A., Single-walled carbon nanotube polymer composites: strength and weakness. Advanced Materials, 2000, 12: 750–753.

    Article  Google Scholar 

  9. Eitan, A., Jiang, K.Y., Dukes, D., Andrews, R. and Schadler, L.S., Surface modification of multiwalled carbon nanotubes: toward the tailoring of the interface in polymer composites. Chemistry of Materials, 2003, 15: 3198–3201.

    Article  Google Scholar 

  10. Steuerman, D.W., Star, A., Narizzano, R., Choi, H., Ries, R.S., Nicolini, C., Stoddart, J.F. and Heath, J.R., Interactions between conjugated polymers and single-walled carbon nanotubes. The Journal of Physical Chemistry B, 2002, 106: 3124–3130.

    Article  Google Scholar 

  11. Hamon, M.A., Hu, H., Bhowmik, P., Itkis, H.M.E. and Haddon, R.C., Ester-functionalized soluble single-walled carbon nanotubes. Applied Physics A, 2002, 74: 333–338.

    Article  Google Scholar 

  12. Chen, J., Hamon, M.A., Hu, H., Chen, Y.S., Rao, A.M., Eklund, P.C. and Haddon, R.C., Solution properties of single-walled carbon nanotubes. Science, 1998, 282: 95–98.

    Article  Google Scholar 

  13. Frankland, S.J.V., Caglar, A., Brenner, D.W. and Griebel, M., Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube-polymer interfaces. The Journal of Physical Chemistry B, 2002, 106: 3046–3048.

    Article  Google Scholar 

  14. Namilae, S. and Chandra, N., Multiscale model to study the effect of interfaces in carbon nanotube-based composites. Journal of Engineering Materials and Technology, 2005, 127: 222–232.

    Article  Google Scholar 

  15. Lordi, V. and Yao, N., Molecular mechanics of binding in carbon-nanotube-polymer composites. Journal of Materials Research, 2000, 15: 2770–2779.

    Article  Google Scholar 

  16. Chen, R.J., Zhang, Y.G., Wang, D.W. and Dai, H.J., Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. Journal of the American Chemical Society, 2001, 123: 3838–3839.

    Article  Google Scholar 

  17. O’Connell, M.J., Boul, P., Ericson, L.M., Huffman, C., Wang, Y.H., Haroz, E., Kuper, C., Tour, J., Ausman, K.D. and Smalley, R.E., Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chemical Physics Letters, 2001, 342: 265–271.

    Article  Google Scholar 

  18. Liu, J.Q., Xiao, T., Liao, K. and Wu, P., Interfacial design of carbon nanotube polymer composites: hybrid system of noncovalent and covalent functionalization. Nanotechnology, 2007, 18: 165701.

    Article  Google Scholar 

  19. Wei, C.Y., Adhesion and reinforcement in carbon nanotube polymer composite. Applied Physics Letters, 2006, 88: 093108.

    Article  Google Scholar 

  20. Zhang, Q., Qi, Y., Hector, L.G., Cagin, T. and Goddard, W.A., Origin of static friction and its relationship to adhesion at the atomic scale. Physical Review B, 2007, 75: 144114.

    Article  Google Scholar 

  21. Huq, A.M.A., Goh, K.L., Zhou, Z.R. and Liao, K., On defect interactions in axially loaded single-walled carbon nanotubes. Journal of Applied Physics, 2008, 103: 054306.

    Article  Google Scholar 

  22. Pitkethly, M.J. and Doble, J.B., Characterizing the fiber/matrix interface of carbon fiber-reinforced composites using a single fiber pull-out test. Composites, 1990, 21: 389–395.

    Article  Google Scholar 

  23. Cooper, C.A., Cohen, S.R., Barber, A.H. and Wagner, H.D., Detachment of nanotubes from a polymer matrix. Applied Physics Letters, 2002, 81: 3873–3875.

    Article  Google Scholar 

  24. Barber, A.H., Cohen, S.R. and Wagner, H.D., Measurement of carbon nanotube-polymer interfacial strength. Applied Physics Letters, 2003, 82: 4140–4142.

    Article  Google Scholar 

  25. Liao, K. and Li, S., Interfacial characteristics of a carbon nanotube-polystyrene composite system. Applied Physics Letters, 2001, 79: 4225–4227.

    Article  Google Scholar 

  26. Wei, C.Y., Structural phase transition of alkane molecules in nanotube composites. Physical Review B, 2007, 76: 134104.

    Article  Google Scholar 

  27. Chen, S.M., Shen, W.M., Wu, G.Z., Chen, D.Y. and Jiang, M., A new approach to the functionalization of single-walled carbon nanotubes with alkyl and carboxyl groups. Chemical Physics Letters, 2005, 402: 312–317.

    Article  Google Scholar 

  28. Liu, L.Q. and Wagner, H.D., A comparison of the mechanical strength and stiffness of MWNT-PMMA and MWNT-epoxy nanocomposites. Composite Interfaces, 2007, 14: 285–297.

    Article  Google Scholar 

  29. in het Panhuis, M., Maiti, A., Dalton, A.B., van den Noort, A., Coleman, J.N., McCarthy, B. and Blau, W.J., Selective interaction in a polymer-single-wall carbon nanotube composite. The Journal of Physical Chemistry B, 2003, 107: 478–482.

    Article  Google Scholar 

  30. Amorphous Cell and Discover are modules in Materials Studio, a software package for materials simulation and modeling, developed by Accelrys®Software Incorporation, USA.

  31. Brandrup, J., Immergut, E.H., Grulke, E.A., Abe, A. and Bloch, D.R., Polymer Handbook. New York: Wiley, 1999.

  32. Sun, H., COMPASS: an ab initio force-field optimized for condensed-phase applications- overview with details on alkane and benzene compounds. The Journal of Physical Chemistry B, 1998, 102: 7338–7364.

    Article  Google Scholar 

  33. Wong, M., Paramsothy, M., Xu, X.J., Ren, Y., Li, S. and Liao, K., Physical interactions at carbon nanotube polymer interface. Polymer, 2003, 44: 7757–7764.

    Article  Google Scholar 

  34. Yang, M., Koutsos, V. and Zaiser, M., Interaction between polymers and carbon nanotubes: a molecular dynamics study. The Journal of Physical Chemistry B, 2005, 109: 10009–10014.

    Article  Google Scholar 

  35. Xia, Z. and Curtin, W.A., Pullout forces and friction in multiwall carbon nanotubes. Physical Review B, 2004, 69: 233408.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tan Xiao.

Additional information

Project supported by the National Natural Science Foundation of China (No. 11272360), the Natural Science Foundation of Guangdong Province (No. 2014A030313793), and the Research Fund for the Doctoral Program of Higher Education of China (No. 20120171110035).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, T., Liu, J. & Xiong, H. Effects of Different Functionalization Schemes on the Interfacial Strength of Carbon Nanotube Polyethylene Composite. Acta Mech. Solida Sin. 28, 277–284 (2015). https://doi.org/10.1016/S0894-9166(15)30014-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0894-9166(15)30014-8

Key Words

Navigation