Skip to main content
Log in

Modification of one-dimension coupled hysteresis model for GMM with the domain flexing function

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

This paper focuses on eliminating the unphysical negative susceptibility which appears when magnetic field is at unsaturated excitation level and reduces from extremity of the hysteresis loop in one-dimension coupled hysteresis model. The domain flexing function c (H) is used to replace the domain flexing constant c in one-dimension coupled hysteresis model. The feasibility and rationality of proposed modification are convinced by comparing the magnetization and magnetostriction curves with experimental data and another typical modification results. The effects of pre-stress and temperature on magnetic-elastic-thermal coupling property and hysteresis behavior are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clark, A.E., Bozorth, R.M. and Desavage, B.F., Anomalous thermal expansion and magnetostriction of single crystals of dysprosium. Physics Letters, 1963, 5(2): 100–102.

    Article  Google Scholar 

  2. Clark, A.E. and Belson, H.S., Giant Room-Temperature Magnetostrictions in TbFe2 and DyFe2. Physical Review B, 1972, 5(9): 3642–3644.

    Article  Google Scholar 

  3. Clark, A.E., Magnetic and magnetoelastic properties of highly magnetostrictive rare earth-iron Laves phase compounds. America Institute of Physics Conference Proceeding, 1973, 18: 1015–1029.

    Google Scholar 

  4. Clark, A.E., High-field magnetization and coercivity of amorphous rare-earth-Fe2 alloys. Applied Physics Letters, 1973, 23(11): 642–644.

    Article  Google Scholar 

  5. Ralph, C.F., James, R.D., Dariusz, A.B., Vijay, G. and Norman, D.H., Terfenol-D driven flaps for helicopter vibration reduction. Smart Materials and Structures, 1996, 5(1): 49–57.

    Article  Google Scholar 

  6. Yoshiya, N., Masanao, N., Keiji, M., Kiyoshhi, T., Masashi, Y. and Takafumi, F., Development of active six-degrees-of-freedom microvibration control system using giant magnetostrictive actuators. Smart Materials and Structures, 2000, 9(2): 175–185.

    Article  Google Scholar 

  7. John, S., Sirohi, J., Wang, G. and Wereley, N.M., Comparison of piezeoelectric, magnetostrictive, and electrostrictive hybrid hydraulic actuators. Journal of Intelligent Material System and Structures, 2007, 18(10): 1035–1048.

    Article  Google Scholar 

  8. Jiles, D.C. and Atherton, D.L., Theory of ferromagnetics hysteresis. Journal of Magnetism and Magnetic Materials, 1986, 61(1–2): 48–60.

    Article  Google Scholar 

  9. Feng, X., Studies on the Constitutive Theory and Experiment of Ferromagnetic Materials. Doctor thesis, Tsinghua Univesity, 2002.

  10. Smith, R.C., Hysteresis modeling in magnetostrictive materials via Preisach operators. Journal of Mathematical Systems, Estimation and Control, 1998, 8(2): 1–23.

    MathSciNet  MATH  Google Scholar 

  11. Zheng, X.J., Su, L. and Jin, K., A dynamical hysteresis constitutive relation for giant magnetostrictive materials. Mechanics of Advanced Materials and Structures, 2009, 16(7): 516–521.

    Article  Google Scholar 

  12. Chwastek, K., Modeling offset minor hysteresis loops with the modified Jiles-Atherton description. Journal of Physics D: Applied Physics, 2009, 42(16): 165002.

    Article  Google Scholar 

  13. Zheng, X.J. and Su, L., A one-dimension coupled hysteresis model for giant magnetostrictive materials. Journal of Magnetism and Magnetic Materials, 2007, 309(2): 263–271.

    Article  Google Scholar 

  14. Wang, T.Z. and Zhou, Y.H., A nonlinear transient constitutive model with eddy current effects for giant magnetostrictive materials. Journal of Applied Physics, 2010, 108(12): 123905

    Article  MathSciNet  Google Scholar 

  15. Miljavec, D. and Zidaric, B., Introduction a domain flexing function in the Jiles-Atherton hysteresis model. Journal of Magnetism and Magnetic Materials, 2008, 320(5): 763–768.

    Article  Google Scholar 

  16. Dapino, M.J., Smith, R.C. and Flatau, A.B., Structural magnetic strain model for magnetostrictive transducers. IEEE Transactions on Mangetics, 2000, 36(3): 545–556.

    Google Scholar 

  17. Jin, K., Kou, Y., Liang, Y.R. and Zheng, X.J., Effects of hysteresis losses on dynamic behavior of magnetostrictive actuators. Journal of Applied Physics, 2011, 110(9): 093908.

    Article  Google Scholar 

  18. Wang, T.Z. and Zhou, Y.H., Nonlinear dynamic model with multi-fields coupling effects for giant magnetostrictive actuators. International Journal of Solids and Structures, 2013, 50(19): 2970–2979.

    Article  Google Scholar 

  19. Zheng, J.J., Cao, S.Y., Wang, H.L. and Huang, W.M., Hybrid genetic algorithms for parameter identification of a hysteresis model of magnetostrictive actuators. Neurocomputing, 2007, 70(4–6): 749–761.

    Article  Google Scholar 

  20. Calkins, F.T., Smith, R.C. and Flatau, A.B., Energy-based hysteresis model for magnetostrictive transducers. IEEE Transactions on Magnetics, 2000, 36(2): 429–439.

    Article  Google Scholar 

  21. Jiles, D.C. and Hariharan, S., Interpretation of the magnetization mechanism in Terfenol-D using Barkhausen pulse-height analysis and irreversible magnetostriction. Journal of Applied Physics, 1990, 67(9): 5013–5015.

    Article  Google Scholar 

  22. Clark, A.E., Teter, J.P. and McMasters, O.D., Magnetostriction ‘jumps’ in twinned Tb0.3Dy0.7Fe1.9. Journal of Applied Physics, 1988, 63(8): 3910–3912.

    Article  Google Scholar 

  23. Jiles, D.C., Thoelke, J.B. and Devine, M.K., Numerical determination of hysteresis parameters for the modeling of magnetic properties using the theory of ferromagnetic hysteresis. IEEE Transactions on Magnetics, 1992, 28(1): 27–35.

    Article  Google Scholar 

  24. Moffet, M.B., Clark, A.E., Wun-Fogle, M., Linberg, J., Teter, J.P. and McLaughlin, E.A., Characterization of Terfenol-D for magnetostrictive transducers. Journal of Acoustical Society of America, 1991, 89(3): 1448–1455.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youhe Zhou.

Additional information

Project supported by the Fund of Natural Science Foundation of China (Nos. 10972094, 11032006, 11121202 and 11202087) and the Fundamental Research Funds for the Central Universities (No. lzujbky-2011-6) and Specialized Research Fund for the Doctoral Program of Higher Education (No. 20110211120027).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhou, Y. Modification of one-dimension coupled hysteresis model for GMM with the domain flexing function. Acta Mech. Solida Sin. 27, 461–466 (2014). https://doi.org/10.1016/S0894-9166(14)60054-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0894-9166(14)60054-9

Key Words

Navigation