Skip to main content
Log in

A note on Mori-Tanaka’s method

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

Explicit expressions of Mori-Tanaka’s tensor for a transversely isotropic fiber reinforced UD composite are presented. Closed-form formulae for the effective elastic properties of the composite are obtained. In a 3D sense, the resulting compliance tensor of the composite is symmetric. Nevertheless, the 2D compliance tensor based on a deteriorated Mori-Tanaka’s tensor is not symmetric. Nor is the compliance tensor defined upon a deteriorated 2D Eshelby’s tensor. The in-plane effective elastic properties given by those three approaches are different. A detailed comparison between the predicted results obtained from those approaches with experimental data available for a number of UD composites is made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mori, T. and Tanaka, K., Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica, 1973, 21(5): 571–574.

    Article  Google Scholar 

  2. Benveniste, Y., A new approach to the application of Mori-Tanaka’s theory in composite materials. Mechanics of Materials, 1987, 6(2): 147–157.

    Article  Google Scholar 

  3. Eshelby, J.D., The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1957, 241(1226): 376–396.

    MathSciNet  Google Scholar 

  4. Tandon, G.P. and Weng, G.J., The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites. Polymer Composites, 1984, 5(4): 327–333.

    Article  Google Scholar 

  5. Tandon, G.P. and Weng, G.J., Stress Distribution in and Around Spheroidal Inclusions and Voids at Finite Concentration. Journal of Applied Mechanics, 1986, 53(3): 511–518.

    Article  Google Scholar 

  6. Weng, G.J., Some elastic properties of reinforced solids, with special reference to isotropic ones containing spherical inclusions. International Journal of Engineering Science, 1984, 22(7): 845–856.

    Article  Google Scholar 

  7. Wang, Y.M. and Weng, G.J., The influence of inclusion shape on the overall viscoelastic behavior of composites. Journal of Applied Mechanics, 1992, 59(3): 510–518.

    Article  Google Scholar 

  8. Zhao, Y.H. and Weng, G.J., Effective elastic moduli of ribbon-reinforced composites. Journal of Applied Mechanics, 1990, 57(1): 158–167.

    Article  Google Scholar 

  9. Zheng, Q.S. and Du, D.X., An explicit and universally applicable estimate for the effective properties of multiphase composites which accounts for inclusion distribution. Journal of the Mechanics and Physics of Solids, 2001, 49(11): 2765–2788.

    Article  Google Scholar 

  10. Klusemann, B., Böhm, H.J. and Svendsen, B., Homogenization methods for multi-phase elastic composites with non-elliptical reinforcements: Comparisons and benchmarks. European Journal of Mechanics-A/Solids, 2012, 34(0): 21–37.

    Article  MathSciNet  Google Scholar 

  11. Kachanov M., Tsukrov I. and Shafiro B., Effective moduli of solids with cavities of various shapes. Applied Mechanics Reviews, 1994, 47(1S).

    Article  Google Scholar 

  12. Eroshkin, O. and Tsukrov, I., On micromechanical modeling of particulate composites with inclusions of various shapes. International Journal of Solids and Structures, 2005, 42(2): 409–427.

    Article  Google Scholar 

  13. Nogales, S. and Böhm, H.J., Modeling of the thermal conductivity and thermomechanical behavior of diamond reinforced composites. International Journal of Engineering Science, 2008, 46(6): 606–619.

    Article  Google Scholar 

  14. Tandon, G.P. and Weng, G.J., Average stress in the matrix and effective moduli of randomly oriented composites. Composite Science Technology, 1986, 27(2): 111–132.

    Article  Google Scholar 

  15. Zhao, Y., Tandon, G. and Weng, G., Elastic moduli for a class of porous materials. Acta Mechanica, 1989, 76(1): 105–131.

    Article  Google Scholar 

  16. Gommers, B., Verpoest, I. and Van, H.P., The Mori—Tanaka method applied to textile composite materials. Acta Materialia, 1998, 46(6): 2223–2235.

    Article  Google Scholar 

  17. Schjøt, T.J. and Pyrz, R., The Mori-Tanaka stiffness tensor: diagonal symmetry, complex fibre orientations and non-dilute volume fractions. Mechanics of Materials, 2001, 33(10): 531–544.

    Article  Google Scholar 

  18. Benveniste, Y., Dvorak, G.J. and Chen, T., Stress fields in composites with coated inclusions. Mechanics of Materials, 1989, 7(4): 305–317.

    Article  Google Scholar 

  19. Chen, T. and Dvorak, G.J. and Benveniste, Y., Stress fields in composites reinforced by coated cylindrically orthotropic fibers. Mechanics of Materials, 1990, 9(1): 17–32.

    Article  Google Scholar 

  20. Liu, H. and Brinson, L.C., A hybrid numerical-analytical method for modeling the viscoelastic properties of polymer nanocomposites. Journal of Applied Mechanics, 2006, 73(5): 758–768.

    Article  Google Scholar 

  21. Li, Y., Waas, A.M. and Arruda, E.M., A closed-form, hierarchical, multi-interphase model for composites— Derivation, verification and application to nanocomposites. Journal of the Mechanics and Physics of Solids, 2011, 59(1): 43–63.

    Article  MathSciNet  Google Scholar 

  22. Benveniste, Y., Dvorak, G.J. and Chen, T., On diagonal and elastic symmetry of the approximate effective stiffness tensor of heterogeneous media. Journal of the Mechanics and Physics of Solids, 1991, 39(7): 927–946.

    Article  MathSciNet  Google Scholar 

  23. Qiu, Y.P. and Weng, G.J., On the application of Mori-Tanaka’s theory involving transversely isotropic spheroidal inclusions. International Journal of Engineering Science, 1990, 28(11): 1121–1137.

    Article  MathSciNet  Google Scholar 

  24. Castañda, P.P. and Willis, J.R., The effect of spatial distribution on the effective behavior of composite materials and cracked media. Journal of the Mechanics and Physics of Solids, 1995, 43(12): 1919–1951.

    Article  MathSciNet  Google Scholar 

  25. Ferrari, M., Asymmetry and the high concentration limit of the Mori-Tanaka effective medium theory. Mechanics of Materials, 1991, 11(3): 251–256.

    Article  Google Scholar 

  26. Berryman, J.G. and Berge, P.A., Critique of two explicit schemes for estimating elastic properties of multiphase composites. Mechanics of Materials, 1996, 22(2): 149–164.

    Article  Google Scholar 

  27. Li, J.Y., On micromechanics approximation for the effective thermoelastic moduli of multi-phase composite materials. Mechanics of Materials, 1999, 31(2): 149–159.

    Article  Google Scholar 

  28. Mura, T., Micromechanics of defects in solids, The Netherlands: Springer Company, 1987.

    Book  Google Scholar 

  29. Huang, Z.M. and Zhou, Y.X., Strength of Fibrous Composites. Hangzhou, New York: Zhejiang University Press & Springer, 2011.

    Google Scholar 

  30. Soden, P.D., Hinton, M.J. and Kaddour, A.S., Lamina properties, lay-up configurations and loading conditions for a range of fibre-reinforced composite laminates. Composites Science Technology, 1998, 58(7): 1011–1022.

    Article  Google Scholar 

  31. Kaddour, A.S. and Hinton, M., Input data for test cases used in benchmarking triaxial failure theories of composites. Journal of Composite Materials, 2012, 46(19–20): 2295–2312.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengming Huang.

Additional information

Project supported by the National Natural Science Foundation of China (No. 11272238) and Doctoral Fund of Ministry of Education of China (No. 20120072110036).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Huang, Z. A note on Mori-Tanaka’s method. Acta Mech. Solida Sin. 27, 234–244 (2014). https://doi.org/10.1016/S0894-9166(14)60033-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0894-9166(14)60033-1

Key Words

Navigation