Skip to main content
Log in

A modified torsion pendulum for measuring the shear modulus of a single micro-sized filament

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

A modified torsion pendulum apparatus is developed for measuring the shear modulus of single filaments with uniform micro-sized diameter. A single filament fixed at both ends and with a ring-shaped mass attached at the middle is used as a clamped-clamped torsion pendulum. The shear modulus of single filaments can be expressed as a function of the oscillation frequency of the torsion pendulum. The oscillation motion is measured with a CCD laser displacement sensor, and its frequency is determined by the Fast Fourier Transform (FFT) method. The shear moduli of three types of filaments: copper wires, tungsten wires and carbon fibers are accurately measured with this technique. It is found that the size effect in shear moduli of both copper wires and tungsten wires is minor. Finally, the error analysis of our measurement technique is presented in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Murali, S., Srikanth, N., Wong, Y. and Vath, C.J., Fundamentals of thermo-sonic copper wire bonding in microelectronics packaging. Journal of Materials Science, 2007, 42: 615–623.

    Article  Google Scholar 

  2. Li, C., Thostenson, E.T. and Chou, T.W., Sensors and actuators based on carbon nanotubes and their composites: A review. Composites Science and Technology, 2008, 68: 1227–1249.

    Article  Google Scholar 

  3. Sayir, A., Carbon fiber reinforced hafnium carbide composite. Journal of Materials Science, 2004, 39: 5995–6003.

    Article  Google Scholar 

  4. Yu, N., Polycarpou, A.A. and Wagoner Johnson, A.J., Measuring mechanical properties of fine-wire cross-sections used in medical devices. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2004, 70: 106–113.

    Article  Google Scholar 

  5. Hou, P.H. and Chen, T.Y., An automatic tensile test measurement system for miniature specimens. Experimental Techniques, 2005, 29: 32–36.

    Article  Google Scholar 

  6. Hemker K. and Sharpe Jr, W., Microscale characterization of mechanical properties. Annual Review of Materials Research, 2007, 37: 93–126.

    Article  Google Scholar 

  7. Haque, M. A. and Saif, M.T.A., A review of mems-based microscale and nanoscale tensile and bending testing. Experimental Mechanics, 2003, 43: 248–255.

    Article  Google Scholar 

  8. Liu, D., He, Y., Hu, P., Ding, H., Tang, X. and Li, Z., On the mechanical properties in micro-tensile testing of single fiber. Journal of Experimental Mechanics, 2012, 27: 61–69.

    Google Scholar 

  9. Maenaka, K., Ioku, S., Sawai, N., Fujita, T. and Takayama, Y., Design, fabrication and operation of mems gimbal gyroscope. Sensors and Actuators A: Physical, 2005, 121: 6–15.

    Article  Google Scholar 

  10. Arslan, A., Brown, D., Davis, W.O., Holmstrom, S., Gokce, S.K. and Urey, H., Comb-actuated resonant torsional microscanner with mechanical amplification. Journal of Microelectromechanical Systems, 2010, 19: 936–943.

    Article  Google Scholar 

  11. Wu, A.S., Nie, X., Hudspeth, M.C., Chen, W.W., Chou, T.W., Lashmore, D.S., Schauer, M.W., Towle, E. and Rioux, J., Carbon nanotube fibers as torsion sensors. Applied Physics Letters, 2012, 100: 201908-201908-201904.

    Article  Google Scholar 

  12. Zhang, X.M., Chau, F.S., Quan, C., Lam, Y.L. and Liu, A.Q., A study of the static characteristics of a torsional micromirror. Sensors and Actuators A: Physical, 2001, 90: 73–81.

    Article  Google Scholar 

  13. Uchic, M.D., Dimiduk, D.M., Florando, J.N. and Nix, W.D., Sample dimensions influence strength and crystal plasticity. Science, 2004, 305: 986.

    Article  Google Scholar 

  14. Uchic, M.D., Shade, P.A. and Dimiduk, D.M., Plasticity of micrometer-scale single crystals in compression. Annual Review of Materials Research, 2009, 39: 361–386.

    Article  Google Scholar 

  15. Stölken, J.S. and Evans, A.G., A microbend test method for measuring the plasticity length scale. Acta Materialia, 1998, 46: 5109–5115.

    Article  Google Scholar 

  16. Fleck N.A., Muller, G.M., Ashby, M.F. and Hutchinson, J.W., Strain gradient plasticity: Theory and experiment. Acta Metallurgica et Materialia, 1994, 42: 475–487.

    Article  Google Scholar 

  17. Dunstan, D.J., Ehrler, B., Bossis, R., Joly, S., P’NG, K.M.Y. and Bushby, A.J., Elastic limit and strain hardening of thin wires in torsion. Physical Review Letters, 2009, 103: 155501.

    Article  Google Scholar 

  18. Liu, D., He, Y., Tang, X., Ding, H., Hu, P. and Cao, P., Size effects in the torsion of microscale copper wires: Experiment and analysis. Scripta Materialia, 2012, 66: 406–409.

    Article  Google Scholar 

  19. Liu, D., He, Y., Dunstan, D.J., Zhang, B., Gan, Z., Hu, P. and Ding, H., Toward a further understanding of size effects in the torsion of thin metal wires: An experimental and theoretical assessment. International Journal of Plasticity, 2013, 41: 30–52.

    Article  Google Scholar 

  20. Liu, D., He, Y., Dunstan, D.J., Zhang, B., Gan, Z., Hu, P. and Ding, H., Anomalous plasticity in the cyclic torsion of micron scale metallic wires. Physical Review Letters, 2013, 110: 244301.

    Article  Google Scholar 

  21. Nilsson, S.G., Borrisé, X. and Montelius, L., Size effect on young’s modulus of thin chromium cantilevers. Applied Physics Letters, 2004, 85: 3555–3557.

    Article  Google Scholar 

  22. Son, D., Jeong, J. and Kwon, D., Film-thickness considerations in microcantilever-beam test in measuring mechanical properties of metal thin film. Thin Solid Films, 2003, 437: 182–187.

    Article  Google Scholar 

  23. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P., Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids, 2003, 51: 1477–1508.

    Article  Google Scholar 

  24. Fallen, C.T., Costello, J., Crawford, G. and Schmidt, J.A., Measuring the elastic properties of fine wire. Journal Of Biomedical Materials Research, 2001, 58: 694–700.

    Article  Google Scholar 

  25. Tong, P., Yang, F., Lam, D.C.C. and Wang, J., Size effects of hair-sized structures-torsion. Key Engineering Materials, 2004, 261: 11–22.

    Article  Google Scholar 

  26. Kahrobaiyan, M.H., Tajalli, S.A., Movahhedy, M.R., Akbari, J. and Ahmadian, M.T., Torsion of strain gradient bars. International Journal of Engineering Science, 2011, 49: 856–866.

    Article  MathSciNet  Google Scholar 

  27. Peirce, F.T., The rigidity of cotton hairs. Journal of the Textile Institute Transactions, 1923, 14: T1–T17.

    Article  Google Scholar 

  28. Hadley, D.W., Pinnock, P.R. and Ward, I.M., Anisotropy in oriented fibres from synthetic polymers. Journal of Materials Science, 1969, 4: 152–165.

    Article  Google Scholar 

  29. DeTeresa, S.J., Allen, S.R., Farris, R.J. and Porter, R.S., Compressive and torsional behaviour of kevlar 49 fibre. Journal of Materials Science, 1984, 19: 57–72.

    Article  Google Scholar 

  30. Villeneuve, J.F. and Naslain, R., Shear moduli of carbon, si-co, si-c-ti-o and alumina single ceramic fibers as assessed by torsion pendulum tests. Composites Science and Technology, 1993, 49: 191–203.

    Article  Google Scholar 

  31. Adams, R.D. and Lloyd, D.H., Apparatus for measuring the torsional modulus and damping of single carbon fibres. Journal of Physics E: Scientific Instruments, 1975, 8: 475–480.

    Article  Google Scholar 

  32. Tsai, C.L. and Daniel, I.M., Determination of shear modulus of single fibers. Experimental Mechanics, 1999, 39: 284–286.

    Article  Google Scholar 

  33. Lim, J., Zheng, J.Q., Masters, K. and Chen, W.W., Mechanical behavior of a265 single fibers. Journal of Materials Science, 2010, 45: 652–661.

    Article  Google Scholar 

  34. Cheng, M., Chen, W. and Weerasooriya, T., Mechanical properties of kevlar km2 single fiber. Journal of Engineering Materials and Technology, 2005, 127: 197–203.

    Article  Google Scholar 

  35. Nilakantan, G., Filament-level modeling of kevlar km2 yarns for ballistic impact studies. Composite Structures, 2013, 104: 1–13.

    Article  Google Scholar 

  36. Lu, W.Y. and Song, B., Quasi-static torsion characterization of micro-diameter copper wires. Experimental Mechanics, 2010, 51: 729–737.

    Article  Google Scholar 

  37. Peirce, F.T., The plasticity of cotton and other materials. Journal of the Textile Institute Transactions, 1923, 14: T390–T413.

    Article  Google Scholar 

  38. Dhingra, R.C. and Postle, R., The measurement of torque in continuous-filament yarns, part 1: Experimental techniques. Journal of the Textile Institute, 1974, 65: 126–132.

    Article  Google Scholar 

  39. Mccord, M.G. and Ellison, M.S., An automated torsion balance for investigation of microstructure of single filaments. I. Polypropylene. Journal of Applied Polymer Science, 1996, 61: 293–306.

    Article  Google Scholar 

  40. Mitchell, P., Torque in worsted wool yarns. Textile Research Journal, 2006, 76: 169–180.

    Article  Google Scholar 

  41. Rao, S.S., Mechanical Vibrations. Addison-Wesley Reading, MA, 1990.

    MATH  Google Scholar 

  42. Goldblum, C.E., Ritter, R.C. and Gillies, G.T., Using the fast fourier transform to determine the period of a physical oscillator with precision. Review of Scientific Instruments, 1988, 59: 778–782.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuming He.

Additional information

Project supported by the National Natural Science Foundation of China (No. 11072084 and 11272131) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20110142110039).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., He, Y., Hu, P. et al. A modified torsion pendulum for measuring the shear modulus of a single micro-sized filament. Acta Mech. Solida Sin. 27, 221–233 (2014). https://doi.org/10.1016/S0894-9166(14)60032-X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0894-9166(14)60032-X

Key Words

Navigation