Skip to main content
Log in

The Analysis of Shallow Shells Based on Multivariable Wavelet Finite Element Method

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

Based on the generalized variational principle and B-spline wavelet on the interval (BSWI), the multivariable BSWI elements with two kinds of variables (TBSWI) for hyperboloidal shell and open cylindrical shell are constructed in this paper. Different from the traditional method, the present one treats the generalized displacement and stress as independent variables. So differentiation and integration are avoided in calculating generalized stress and thus the precision is improved. Furthermore, compared with commonly used Daubechies wavelet, BSWI has explicit expression and excellent approximation property and thus further guarantee satisfactory results. Finally, the efficiency of the constructed multivariable shell elements is validated through several numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, X.C., The Finite Element Method. Beijing: Tsinghua University Press, 2003.

    Google Scholar 

  2. Zienkiewicz, O.C., The Finite Element Method. 3rd edition. London: McGraw Hill, 1977.

    MATH  Google Scholar 

  3. Cheung, Y.K., Finite Strip Method in Structural Analysis. New York: Pergamon Press, 1976.

    MATH  Google Scholar 

  4. Chapelle, D. and Bathe, K.J., The Finite Element Analysis of Shells-Fundamentals. Berlin: Springer, 2003.

    Book  Google Scholar 

  5. Li, D., Lin, Z.Q. and Li, S.H., Numerical analysis of Mindlin shell by meshless local Petrov-Galerkin method. Acta Mechanica Solida Sinica, 2008, 21(2): 163–169.

    Article  Google Scholar 

  6. Wang, X.Z. and Zheng, X.J., Analyses on nonlinear coupling of magneto-thermo-elasticity of ferromagnetic thin shell—II: finite element modeling and application. Acta Mechanica Solida Sinica, 2009, 22(3): 197–205.

    Article  Google Scholar 

  7. Li, S.Q. and Yuan, H., Green quasifunction method for free vibration of simply-supported trapezoidal shallow spherical shell on winkler foundation. Acta Mechanica Solida Sinica, 2010, 23(4): 370–376.

    Article  Google Scholar 

  8. Canuto, C., Tabacco, A. and Urban, K., The wavelet element method Part I: Construction and analysis. Applied and Computational Harmonic Analysis, 1996, 6: 1–52.

    Article  Google Scholar 

  9. Canuto, C., Tabacco, A. and Urban, K., The wavelet element method Part II: Realization and additional feature in 2D and 3D. Applied and Computational Harmonic Analysis, 2000, 8: 123–165.

    Article  MathSciNet  Google Scholar 

  10. Cohen, A., Numerical Analysis of Wavelet Method. Amsterdam: Elsevier Press, 2003.

    MATH  Google Scholar 

  11. Han, J.G., Ren, W.X. and Huang, Y., A spline wavelet finite-element method in structural mechanics. International Journal for Numerical Methods in Engineering, 2006, 66: 166–190.

    Article  Google Scholar 

  12. Xiang, J.W., He, Z.J. and Chen, X.F., The construction of wavelet-based truncated conical shell element using B-spline wavelet on the interval. Acta Mechanica Solida Sinica, 2006, 19(4): 316–326.

    Article  Google Scholar 

  13. Xiang, J.W., Chen, X.F., He, Z.J. and Zhang, Y.H., A new wavelet-based thin plate element using B-spline wavelet on the interval. Computational Mechanics, 2008, 41: 243–255.

    MathSciNet  MATH  Google Scholar 

  14. Liu, Y.N., Qin, F., Liu, Y.H. and Cen, Z.Z., A Daubechies wavelet-based method for elastic problems. Engineering Analysis with Boundary Elements, 2010, 34(2): 114–121.

    Article  MathSciNet  Google Scholar 

  15. Zhang, X.W., Chen, X.F., Wang, X.Z. and He, Z.J., Multivariable finite elements based on B-spline wavelet on the interval for thin plate static and vibration analysis. Finite Elements in Analysis and Design, 2010, 46(5): 416–427.

    Article  MathSciNet  Google Scholar 

  16. Hellinger, E., Der Allgemeine Ansatz der Mechanik der Kontinua. Encyclopadia der Matematischen Wissenschaften, 1914, 4.

  17. Reissner, E., On a variational theorem in elasticity. Journal of Mathematics and Physics, 1950, 29: 90–95.

    Article  MathSciNet  Google Scholar 

  18. Hu, H.C., On some variational principles in the theory of elasticity and the theory of plasticity. Acta physica sinica, 1954, 10(3): 259–289.

    Google Scholar 

  19. Washizu, K., On the Variational Principles of Elasticity and Plasticity. Aeroelasticity and Structures Research Laboratory, Massachusetts Institute of Technology, Technical Report, 1955, 25–18.

  20. Shen, P.C. and Kan, H.B., Multivariable spline element analysis for plate bending problems. Computers & Structures, 1991, 40(6): 1343–1349.

    Article  Google Scholar 

  21. Shen, P.C., He, P.X. and Su, G.L., Stability analysis for plates using the multivariable spline element method. Computers & Structures, 1992, 45(5–6): 1073–1077.

    Article  Google Scholar 

  22. Shen, P.C and He, P.X., Bending analysis of plates and spherical-shells by multivariable spline element method based on generalized variational principle. Computers & Structures, 1995, 55(1): 151–157.

    Article  Google Scholar 

  23. Shen, P.C. and He, P.X., Analysis of bending vibration and stability for thin plate on elastic foundation by the multivariable spline element method. Applied Mathematics and Mechanics, 1997, 18(8): 779–787.

    Article  Google Scholar 

  24. Yu, Z.G., Guo, X.L. and Chu, F.L., A multivariable hierarchical finite element for static and vibration analysis of beams. Finite Elements in Analysis and Design, 2010, 46: 625–631.

    Article  MathSciNet  Google Scholar 

  25. Han, J.G., Ren, W.X. and Huang, Y., A multivariable wavelet-based finite element method and its application to thick plates. Finite Elements in Analysis and Design, 2005, 41: 821–833.

    Article  Google Scholar 

  26. Charles K. Chui and Quak Ewald, Wavelets on a bounded interval. Numerical Methods of Approximation Theory, 1992, 1: 53–57.

    Google Scholar 

  27. Quak Ewald and Weyrich Norman, Decomposition and reconstruction algorithms for spline wavelets on a bounded interval. Applied and Computational Harmonic Analysis, 1994, 1(3): 217–231.

    Article  MathSciNet  Google Scholar 

  28. Goswami, J.C., Chan, A.K. and Chui, C.K., On solving first-kind integral equations using wavelets on a bounded interval. IEEE Transactions on Antennas and Propagation, 1995, 43: 614–622.

    Article  MathSciNet  Google Scholar 

  29. Shen, P.C., Multivariable Spline Finite Element Method. Beijing: Science Press, 1997.

    Google Scholar 

  30. Shen, P.C., Spline Finite Methods in Structural Analysis. Beijing: Hydraulic and Electric Press, 1991.

    Google Scholar 

  31. Yang, S.D., Long, Y.Q. and Gu, G.J., The Introduction of Shell Structures. Beijing: People’s Education Press, 1963.

    Google Scholar 

  32. Shen, P.C. and Wang, J.G., A semianalytical method for static analysis of shallow shells. Computers & Structures, 1989, 31(5): 825–831.

    Article  Google Scholar 

  33. Shen, P.C. and Wang, J.G., Vibration analysis of flat shells by using B spline sunctions. Computers & Structures, 1987, 25(1): 1–10.

    Article  Google Scholar 

  34. Bucco, D. and Marumdar, J., Estimation of the fundamental frequencies of shallow shell. Computers & Structures, 1983, 17: 441–447.

    Article  Google Scholar 

  35. Cheung, Y.K. and Cheung, M.S., Vibration analysis of cylindrical panels. Journal of Sound and Vibration, 1972, 22(1): 59–73.

    Article  Google Scholar 

  36. Shen, P.C. and Wang, J.G., Solution of governing differential equations of vibrating cylindrical shells using B spline functions. International Journal for Numerical Methods in Engineering, 1986, 2: 173–185.

    MATH  Google Scholar 

  37. Wang, J.G., The vibration analysis of folded plate using spline subdomain method. Journal of hefei university of technology, 1988, 11(2): 85–95.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Chen.

Additional information

Project supported by the National Natural Science Foundation of China (No. 50875195), the Foundation for the Author of National Excellent Doctoral Dissertation of China (No. 2007B33) and the Key Project of the National Natural Science Foundation of China (No. 51035007).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Chen, X., He, Z. et al. The Analysis of Shallow Shells Based on Multivariable Wavelet Finite Element Method. Acta Mech. Solida Sin. 24, 450–460 (2011). https://doi.org/10.1016/S0894-9166(11)60044-X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0894-9166(11)60044-X

Key words

Navigation