Skip to main content
Log in

Theory of dielectric elastomers

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

In response to a stimulus, a soft material deforms, and the deformation provides a function. We call such a material a soft active material (SAM). This review focuses on one class of soft active materials: dielectric elastomers. When a membrane of a dielectric elastomer is subject to a voltage through its thickness, the membrane reduces thickness and expands area, possibly straining over 100%. The dielectric elastomers are being developed as transducers for broad applications, including soft robots, adaptive optics, Braille displays, and electric generators. This paper reviews the theory of dielectric elastomers, developed within continuum mechanics and thermodynamics, and motivated by molecular pictures and empirical observations. The theory couples large deformation and electric potential, and describes nonlinear and nonequilibrium behavior, such as electromechanical instability and viscoelasticity. The theory enables the finite element method to simulate transducers of realistic configurations, predicts the efficiency of electromechanical energy conversion, and suggests alternative routes to achieve giant voltage-induced deformation. It is hoped that the theory will aid in the creation of materials and devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mathger, L.M., Denton, E.J., Marshall, N.J. and Hanlon, R.T., Mechanisms and behavioral functions of structural coloration in cephalopods. Journal of the Royal Society Interface, 2008, 6 (Suppl 2): S149–S163.

    Google Scholar 

  2. Zwieniecki, M.A., Melcher, P.J. and Holbrook, N.M., Hydrogel control of xylem hydraulic resistance in plants. Science, 2001, 291: 1059–1062.

    Article  Google Scholar 

  3. Pelrine, R., Kornbluh, R., Pei, Q.B. and Joseph, J., High-speed electrically actuated elastomers with strain greater than 100%. Science, 2000, 287: 836–839.

    Article  Google Scholar 

  4. McKay, T., O’Brien, B., Calius, E. and Anderson, I., Self-priming dielectric elastomer generators. Smart Materials and Structures, 2010, 19: 055025.

    Article  Google Scholar 

  5. Beebe, D.J., Moore, J.S., Bauer, J.M., Yu, Q., Liu, R.H., Devadoss, C. and Jo, B.H., Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature, 2000, 404: 588–590.

    Article  Google Scholar 

  6. Calvert, P., Hydrogels for soft machines. Advanced Materials, 2009, 21: 743–756.

    Article  Google Scholar 

  7. Trivedi, D., Rahn, C.D., Kier, W.M. and Walker, I.D., Soft robotics: biological inspiration, state of the art, and future research. Applied Bionics and Biomechanics, 2008, 5: 99–117.

    Article  Google Scholar 

  8. Cai, S.Q., Lou, Y.C., Ganguly, P., Robisson, A. and Suo, Z.G., Force generated by a swelling elastomer subject to constraint. Journal of Applied Physics, 2010, 107: 103535.

    Article  Google Scholar 

  9. Goulbourne, N.C., Mockensturm, E.M. and Frecker, M., A nonlinear model for dielectric elastomer membranes, Journal of Applied Mechanics, 2005, 72: 899–906.

    Article  Google Scholar 

  10. Dorfmann, A. and Ogden, R.W., Nonlinear electroelasticity. Acta Mechanica, 2005, 174: 167–183.

    Article  Google Scholar 

  11. McMeeking, R.M. and Landis, C.M., Electrostatic forces and stored energy for deformable dielectric materials. Journal of Applied Mechanics, 2005, 72: 581–590.

    Article  Google Scholar 

  12. Suo, Z.G., Zhao, X.H. and Greene, W.H., A nonlinear field theory of deformable dielectrics. Journal of the Mechanics and Physics of Solids, 2008, 56: 467–286.

    Article  MathSciNet  Google Scholar 

  13. Trimarco, C., On the Lagrangian electrostatics of elastic solids. Acta Mechanica, 2009, 204: 193–201.

    Article  Google Scholar 

  14. Sekimoto, K., Thermodynamics and hydrodynamics of chemical gels. Journal of Physics II, 1991, 1: 19–36.

    Google Scholar 

  15. Dolbow, J., Fried, E. and Jia, H.D., Chemically induced swelling of hydrogels. Journal of the Mechanics and Physics of Solids, 2004, 52: 51–84.

    Article  MathSciNet  Google Scholar 

  16. Baek, S. and Srinivasa, A.R., Diffusion of a fluid through an elastic solid undergoing large deformation. International Journal of Non-linear Mechanics, 2004, 39: 201–218.

    Article  Google Scholar 

  17. Hong, W., Zhao, X.H., Zhou, J.X. and Suo, Z.G., A theory of coupled diffusion and large deformation in polymeric gels. Journal of the Mechanics and Physics of Solids, 2008, 56: 1779–1793.

    Article  Google Scholar 

  18. Doi, M., Gel dynamics. Journal of the Physical Society of Japan, 2009, 78: 052001.

    Article  Google Scholar 

  19. Chester, S.A. and Anand, L., A coupled theory of fluid permeation and large deformations for elastomeric materials. Journal of the Mechanics and Physics of Solids, 2010, 58: 1879–1906.

    Article  MathSciNet  Google Scholar 

  20. Nemat-Nasser, S. and Li, J.Y., Electromechanical response of ionic polymer-metal composites. Journal of Applied Physics, 2000, 87: 3321–3331.

    Article  Google Scholar 

  21. Hong, W., Zhao, X.H. and Suo, Z.G., Large deformation and electrochemistry of polyelectrolyte gels. Journal of the Mechanics and Physics of Solids, 2010, 58: 558–577.

    Article  MathSciNet  Google Scholar 

  22. Baek, S. and Srinivasa, A.R., Modeling of the pH-sensitive behavior of an ionic gel in the presence of diffusion. International Journal of Non-linear Mechanics, 2004, 39: 1301–1318.

    Article  Google Scholar 

  23. Li, H., Luo, R., Birgersson, E. and Lam, K.Y., Modeling of multiphase smart hydrogels responding to pH and electric voltage coupled stimuli. Journal of Applied Physics, 2007, 101: 114905.

    Article  Google Scholar 

  24. Marcombe, R., Cai, S.Q., Hong, W., Zhao, X.H., Lapusta, Y. and Suo, Z.G., A theory of constrained swelling of a pH-sensitive hydrogel. Soft Matter, 2010, 6: 784–793.

    Article  Google Scholar 

  25. Cai, S.Q. and Suo, Z.G., Mechanics and chemical thermodynamics of a temperature-sensitive hydrogel. Manuscript in preparation.

  26. Shankar, R., Ghosh, T.K. and Spontak, R.J., Dielectric elastomers as next-generation polymeric actuators. Soft Matter, 2007, 3: 1116–1129.

    Article  Google Scholar 

  27. Carpi, F., Electromechanically active polymers, editorial introducing a special issue dedicated to dielectric elastomers. Polymer International, 2010, 59:277–278.

    Article  Google Scholar 

  28. Brochu, P. and Pei, Q.B., Advances in dielectric elastomers for actuators and artificial muscles. Macromolecular Rapid Communications, 2010, 31: 10–36.

    Article  Google Scholar 

  29. Gibbs, J.W., Graphical methods in the thermodynamics of fluids. Transactions of the Connecticut Academy, 1973, 2: 309–342 (Available online at Google Books).

    Google Scholar 

  30. Plante, J.S. and Dubowsky, S., Large-scale failure modes of dielectric elastomer actuators. International Journal of Solids and Structures, 2006, 43: 7727–7751.

    Article  Google Scholar 

  31. Wissler, M. and Mazza, E., Mechanical behavior of acrylic elastomer used in dielectric elastomer actuators. Sensors and Actuators A, 2007, 134: 494–504.

    Article  Google Scholar 

  32. Kollosche, M. and Kofod, G., Electrical failure in blends of chemically identical, soft thermoplastic elastomers with different elastic stiffness. Applied Physics Letters, 2010, 96: 071904.

    Article  Google Scholar 

  33. Lochmatter, P., Kovacs, G. and Michel, S., Characterization of dielectric elastomer actuators based on a hyperelastic film model. Sensors and Actuators A, 2007, 135: 748–757.

    Article  Google Scholar 

  34. Moscardo, M., Zhao, X.H., Suo, Z.G. and Lapusta, Y., On designing dielectric elastomer actuators. Journal of Applied Physics, 2008, 104: 093503.

    Article  Google Scholar 

  35. Koh, S.J.A., Zhao, X.H. and Suo, Z.G., Maximal energy that can be converted by a dielectric elastomer generator. Applied Physics Letters, 2009, 94: 262902.

    Article  Google Scholar 

  36. Koh, S.J.A., Keplinger, C., Li, T.F., Bauer, S. and Suo, Z.G., Dielectric elastomer generators: how much energy can be converted? Transactions on Mechatronics, in press.

  37. Diaz-Calleja., R. and Llovera-Segovi., P., Energy diagrams and stability restrictions for electroelastic generators. Journal of Polymer Science B, 2010, 48: 2023–2028.

    Article  Google Scholar 

  38. Gibbs, J.W., A method of geometrical representation of the thermodynamic properties of substances by means of surfaces. Transactions of the Connecticut Academy, 1973, 2: 382–404 (Available online at Google Books).

    Google Scholar 

  39. Zhao, X.H., Hong, W. and Suo, Z.G., Electromechanical coexistent states and hysteresis in dielectric elastomers. Physical Review B, 2007, 76: 134113.

    Article  Google Scholar 

  40. Maxwell, J.C., A Treatise on Electricity and Magnetism, Volume 1, Chapter V, Mechanical action between two electrical systems. Oxford: Oxford University Press, 1873 (Available online at Google Books).

  41. Kofod, G., Sommer-Larsen, P., Kornbluh, R. and Pelrine, R., Actuation response of polyacrylate dielectric elastomers. Journal of Intelligent Material Systems and Structures, 2003, 14: 787–793.

    Article  Google Scholar 

  42. Kofod, G. and Sommer-Larse., P., Silicone dielectric elastomer actuators: finite-elasticity model of actuation. Sensors and Actuators A, 2005, 122: 273–283.

    Article  Google Scholar 

  43. Treloar, L.R.G., The Physics of Rubber Elasticity. Oxford: Oxford University Press, 1975.

    MATH  Google Scholar 

  44. Arruda, E.M. and Boyce, M.C., A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. Journal of the Mechanics and Physics of Solids, 1993, 41: 389–412.

    Article  Google Scholar 

  45. Gent, A.N., A new constitutive relation for rubber. Rubber Chemistry and Technology, 1996, 69: 59–61.

    Article  Google Scholar 

  46. Zhao, X. and Suo, Z.G., Electrostriction in elastic dielectrics undergoing large deformation. Journal of Applied Physics, 2008, 104: 123530.

    Article  Google Scholar 

  47. Wissler, M. and Mazza, E., Electromechanical coupling in dielectric elastomer actuators. Sensors and Actuators A, 2007, 138: 384–393.

    Article  Google Scholar 

  48. Li, B., Liu, L.W. and Suo, Z.G., Extension limit, polarization saturation, and snap-through instability of dielectric elastomers. Submitted for publication.

  49. Lochmatter, P., Kovacs, G. and Wissler, M., Characterization of dielectric elastomers based on a viscohyperelastic film model. Smart Materials and Structures, 2007, 135: 748–757.

    Google Scholar 

  50. Ha, S.M., Wissler, M., Pelrine, R., Stanford, S., Kovas, G. and Pei, Q., Characterization of electroelastomers based on interpenetrating polymer networks. Proceedings of SPIE, 2007, 6524: 652408.

    Article  Google Scholar 

  51. Plante, J.S. and Dubowsky, S., On the performance mechanisms of dielectric elastomer actuators. Sensors and Actuators A, 2007, 137: 96–109.

    Article  Google Scholar 

  52. Zhao, X.H., Koh, S.J.A. and Suo, Z.G., Nonequilibrium thermodynamics of dielectric elastomers. International Journal of Applied Mechanics. Preprint: http://www.seas.harvard.edu/suo/papers/242.pdf.

  53. Silberstein, M.N. and Boyce, M.C., Constitutive modeling of the rate, temperature, and hydration dependent deformation response of Nafion to monotonic and cyclic loading. Journal of Power Sources, 2010, 195: 5692–5706.

    Article  Google Scholar 

  54. Zhang, Q.M., Bharti, V. and Zhao, X., Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly (vinylidene fluoride-trifluoroethylene) copolymer. Science, 1998, 280: 2101–2104.

    Article  Google Scholar 

  55. Pelrine, R.E., Kornbluh, R.D. and Joseph, J.P., Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sensors and Actuators A, 1998, 64: 77–85.

    Article  Google Scholar 

  56. Ha, S.M., Yuan, W., Pei, Q.B., Pelrine, R. and Stanford, S., Interpenetrating polymer networks for highperformance electroelastomer artificial muscles. Advanced Materials, 2006, 18: 887–891.

    Article  Google Scholar 

  57. Suo, Z.G. and Zhu, J., Dielectric elastomers of interpenetrating networks. Applied Physics Letters, 2009, 95: 232909.

    Article  Google Scholar 

  58. Shankar, R., Ghosh, T.K. and Spontak, R.J., Electroactive nanostructured polymers as tunable actuators. Advanced Materials, 2007, 19: 2218–2223.

    Article  Google Scholar 

  59. Keplinger, C., Kaltenbrunner, M., Arnold, N. and Bauer, S., Röntgen’s electrode-free elastomer actuators without electromechanical pull-in instability. PNAS, 2010, 107: 4505–4510.

    Article  Google Scholar 

  60. Stark, K.H. and Garton, C.G., Electric strength of irradiated polythene. Nature, 1955, 176: 1225–1226.

    Article  Google Scholar 

  61. Zhao, X.H. and Suo, Z.G., Theory of dielectric elastomers capable of giant deformation of actuation. Physical Review Letters, 2010, 104: 178302.

    Article  Google Scholar 

  62. Zhao, X.H. and Suo, Z.G., Method to analyze electromechanical stability of dielectric elastomers. Applied Physics Letters, 2007, 91: 061921.

    Article  Google Scholar 

  63. Norris, A.N., Comments on ‘Method to analyze electromechanical stability of dielectric elastomers’. Applied Physics Letters, 2008, 92: 026101.

    Article  Google Scholar 

  64. Diaz-Calleja, R., Riande, E. and Sanchis, M.J., On electromechanical stability of dielectric elastomers. Applied Physics Letters, 2008, 93: 101902.

    Article  Google Scholar 

  65. Leng, J.S., Liu, L.W., Liu, Y.J., Yu, K. and Sun, S.H., Electromechanical stability of dielectric elastomers. Applied Physics Letters, 2009, 94: 211901.

    Article  Google Scholar 

  66. Xu, B.X., Mueller, R., Classen, M. and Gross, D., On electromechanical stability analysis of dielectric elastomer actuators. Applied Physics Letters, 2010, 97: 162908.

    Article  Google Scholar 

  67. Dorfmann, A. and Ogden, R.W., Nonlinear electroelastics: incremental equations and stability. International Journal of Engineering Science, 2010, 48: 1–14.

    Article  MathSciNet  Google Scholar 

  68. Bertoldi, K. and Gei, M., Instabilities in multilayered soft dielectrics. Journal of the Mechanics and Physics of Solids, 2011, 59: 18–42.

    Article  MathSciNet  Google Scholar 

  69. Toupin, R.A., The elastic dielectric. Journal of Rational Mechanics and Analysis, 1956, 5: 849–914.

    MathSciNet  MATH  Google Scholar 

  70. Eringen, A.C., On the foundations of electroelastostatics. International Journal of Engineering Science, 1963, 1: 127–153.

    Article  MathSciNet  Google Scholar 

  71. Tiersten, H.F., On the nonlinear equations of thermoelectroelasticity. International Journal of Engineering Science, 1971, 9: 587–604.

    Article  MathSciNet  Google Scholar 

  72. McMeeking, R.M., Landis, C.M. and Jiminez, M.A., A principle of virtual work for comined electrostatic and mechanical loading of materials. International Journal of Non-Linear Mechanics, 2007, 42: 831–838.

    Article  Google Scholar 

  73. Bustamente, R., Dorfmann, A. and Ogden, R.W., Nonlinear electroelastostatics: a variational framework. Zeitschrift für Angewandte Mathematik und Physik, 2009, 60: 154–177.

    Article  MathSciNet  Google Scholar 

  74. Trimarco, C., On the dynamics of electromagnetic bodies. International Journal of Advances in Engineering Sciences and Applied Mathematics, 2009, 1: 157–162.

    Article  Google Scholar 

  75. Vu, D.K., Steinmann, P. and Possart, G., Numerical modelling of non-linear electroelasticity. International Journal for Numerical Methods in Engineering, 2007, 70: 685–704.

    Article  MathSciNet  Google Scholar 

  76. Zhou, J.X., Hong, W., Zhao, X.H. and Suo, Z.G., Propagation of instability in dielectric elastomers. International Journal of Solids and Structures, 2008, 45: 3739–3750.

    Article  Google Scholar 

  77. Zhao, X.H. and Suo, Z. G., Method to analyze programmable deformation of dielectric elastomer layers. Applied Physics Letters, 2008, 93: 251902. The user-supplied subroutine for ABAQUS is available at http://imechanica.org/node/4234 .

    Article  Google Scholar 

  78. O’Brien, B., McKay, T., Calius, E., Xie, S. and I.Anderso., Finite element modelling of dielectric elastomer minimum energy structures. Applied Physics A, 2009, 94: 507–514.

    Article  Google Scholar 

  79. Dorfmann, A. and Ogden, R.W., Nonlinear electroelastic deformations. Journal of Elasticity, 2006, 82: 99–127.

    Article  MathSciNet  Google Scholar 

  80. Mockensturm, E.M. and Goulbourne, N., Dynamic response of dielectric elastomers. International Journal of Non-Linear Mechanics, 2006, 41: 388–395.

    Article  Google Scholar 

  81. Goulbourne, N.C., Mockensturm, E.M. and Frecker, M.I., Electro-elastomers: large deformation analysis of silicone membranes. International Journal of Solids and Structures, 2007, 44: 2609–2626.

    Article  Google Scholar 

  82. Zhu, J., Cai, S.Q. and Suo, Z.G., Resonant behavior of a membrane of a dielectric elastomer. International Journal of Solids and Structures, 2010, 47: 3254–3262.

    Article  Google Scholar 

  83. Zhu, J., Cai, S.Q. and Suo, Z.G., Nonlinear oscillation of a dielectric elastomer balloon. Polymer International, 2010, 59: 378–383.

    Article  Google Scholar 

  84. He, T.H., Zhao, X.H. and Suo, Z.G., Equilibrium and stability of dielectric elastomer membranes undergoing inhomogeneous deformation. Journal of Applied Physics, 2009, 106: 083522.

    Article  Google Scholar 

  85. He, T.H., Cui, L.L., Chen, C. and Suo, Z.G., Nonlinear deformation analysis of dielectric elastomer-spring system. Smart Materials and Structures, 2010, 19: 085017.

    Article  Google Scholar 

  86. Zhu, J., Stoyanov, H., Kofod, G. and Suo. Z.G., Large deformation and electromechanical instability of a dielectric elastomer tube actuator. Journal of Applied Physics, 2010, 108: 074113.

    Article  Google Scholar 

  87. Willis, J.R., Stability of Media and Structures. http://imechanica.org/node/9292.

  88. De Tommasi, D., Puglisi, Saccomandi, G. and Zurlo, G., Pull-in and wrinkling instabilities of electroactive dielectric actuators. Journal of Physics D, 2010, 43: 325501.

    Article  Google Scholar 

  89. Eshelby, J.D., The continuum theory of lattice defects. Solid State Physics, 1956, 3: 79–144.

    Article  Google Scholar 

  90. Abeyaratne, R. and Knowles, J.K., On the driving traction acting on a surface of strain discontinuity in a continuum. Journal of the Mechanics and Physics of Solids, 1990, 38: 345–360.

    Article  MathSciNet  Google Scholar 

  91. Suo, Z.G., Motions of microscopic surfaces in materials. Advances in Applied Mechanics, 1997, 33: 193–294.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Suo.

Additional information

This review draws upon work carried out over the last six years, as a part of a research program on Soft Active Materials, supported at various times by NSF (CMMI-0800161, Large Deformation and Instability in Soft Active Materials), by MURI (W911NF-04-1-0170, Design and Processing of Electret Structures; W911NF-09-1-0476, Innovative Design and Processing for Multi-Functional Adaptive Structural Materials), and by DARPA (W911NF-08-1-0143, Programmable Matter; W911NF-10-1-0113, Cephalopod-Inspired Adaptive Photonic Systems). This work was done in collaboration with many individuals, as indicated by co-authored papers listed in the references. This review has been revised from early drafts using comments received from Siegfried Bauer, Luis Dorfmann, Christoph Keplinger, Guggi Kofod, Adrian Koh, Gabor Kovacs, Liwu Liu, Edoardo Mazza, Arne Schmidt, Carmine Trimarco, and Jian Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suo, Z. Theory of dielectric elastomers. Acta Mech. Solida Sin. 23, 549–578 (2010). https://doi.org/10.1016/S0894-9166(11)60004-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0894-9166(11)60004-9

Key words

Navigation