Skip to main content
Log in

Optimum design of processing condition and experimental investigation of grating fabrication with hot embossing lithography

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

The cross-section profiles of polymer deformation in the hot embossing lithography process were studied by finite element method for various temperature, time and pressure. In order to successfully fabricate high-frequency grating lines, an optimal imprint condition was selected and the related experiments were carried out. The fabricated gratings were illuminated by the SEM image and AFM analysis, which agree well with the simulated results. Therefore, the finite element methods are helpful for a better comprehension of the polymer flow phenomena governing the pattern definition and the design of optimum processing conditions for successful grating fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, Y.M., He, Y.M., Hu, E.Y. and Zhu, H.M., Deformation measurement using dual-frequency projection grating phase-shift profilometry. Acta Mechanica Solida Sinica, 2008, 21(2): 110–115.

    Article  Google Scholar 

  2. Li, X.L., Kang, Y.L., Qiu, W. and Xiao, X., Application of the digital moire method in fracture analysis of a cracked rubber sheet. Acta Mechanica Solida Sinica, 2006, 19(3): 241–247.

    Article  Google Scholar 

  3. Anderson, E.H., Horwitz, C.M. and Smith, H.I., Holographic lithography with thick photoresist. Applied Physics Letters, 1983, 43(9): 874–875.

    Article  Google Scholar 

  4. Ritucci, A., Reale, A., Zuppella, P., Reale, L., Tucceri, P., Tomassetti, G., Bettotti, P. and Pavesi, L., Interference lithography by a soft x-ray laser beam: Nanopatterning on photoresists. Journal of Applied Physics, 2007, 102(3): 034313–1–4.

    Article  Google Scholar 

  5. Xie, H.M., Kishimoto, S. and Shinya, N., Fabrication of high-frequency electron beam moire grating using multi-deposited layer techniques. Optics and Laser Technology, 2000, 32(5): 361–7.

    Article  Google Scholar 

  6. Xie, H.M., Li, B., Geer, R., Xu, B. and Castracane, J., Focused ion beam moire method. Optics and Lasers in Engineering, 2003, 40(3): 163–177.

    Article  Google Scholar 

  7. Liu, Z.W., Xie, H.M., Fang, D.N., Shang, H.X., and Dai, F.L., A novel nano-moire method with scanning tunneling microscope (STM). Journal of Materials Processing Technology, 2004, 148(1): 77–82.

    Article  Google Scholar 

  8. Chou, S.Y., Krauss, P.R. and Renstrom, P.J., Imprint of sub-25nm vias and trenches in polymers. Applied Physics Letters, 1995, 67(21): 3114–3116.

    Article  Google Scholar 

  9. Chou, S.Y., Krauss, P.R. and Renstrom, P.J., Imprint lithography with 25-nanometer resolution. Science, 1996, 272(5258): 85–87.

    Article  Google Scholar 

  10. Schift, H., Nanoimprint lithography: An old story in modern times? A review. Journal of Vacuum Science & Technology B, 2008, 26(2): 458–480.

    Article  Google Scholar 

  11. Guo, L.J., Recent progress in nanoimprint technology and its applications. Journal of Physics D-Applied Physics, 2004, 37(11): R123–R141.

    Article  Google Scholar 

  12. Hirai, Y., Fujiwara, M., Okuno, T., Tanaka, Y., Endo, M., Irie, S., Nakagawa, K. and Sasago, M., Study of the resist deformation in nanoimprint lithography. Journal of Vacuum Science & Technology B, 2001, 19(6): 2811–2815.

    Article  Google Scholar 

  13. Hirai, Y., Konishi, T., Yoshikawa, T. and Yoshida, S., Simulation and experimental study of polymer deformation in nanoimprint lithography. Journal of Vacuum Science & Technology B, 2004, 22(6): 3288–3293.

    Article  Google Scholar 

  14. Hocheng, H., and Nien, C.C., Numerical analysis of effects of mold features and contact friction on cavity filling in the nanoimprinting process. Journal of Microlithography Microfabrication and Microsystems, 2006, 5(1): 011004–1–7.

    Google Scholar 

  15. Wen-Bin, Y., Analysis of the nanoimprint lithography with a viscous model. Microelectronic Engineering, 2005, 77(3): 405–411.

    Google Scholar 

  16. Hirai, Y., Onishi, Y., Tanabe, T., Nishihata, M., Iwasaki, T., Kawata, H. and Iriye, Y., Time dependent analysis of the resist deformation in thermal nanoimprint. Journal of Vacuum Science & Technology B, 2007, 25(6): 2341–2345.

    Article  Google Scholar 

  17. Hirai, Y., Onishi, Y., Tanabe, T., Nishihata, M., Iwasaki, T., Kawata, H. and Iriye, Y., Pressure and resist thickness dependency of resist time evolutions profiles in nanoimprint lithography. Microelectronic Engineering, 2008, 85(5–6): 842–845.

    Article  Google Scholar 

  18. Kim, N.W., Kim, K.W. and Sin, H.C., Finite element analysis of low temperature thermal nanoimprint lithography using a viscoelastic model. Microelectronic Engineering, 2008, 85(9): 1858–1865.

    Article  Google Scholar 

  19. Christensen, R.M., Theroy of Viscoelasticity: An Introduction. London: Academic Press INC. LTD., 1982.

    Google Scholar 

  20. Zhang, T.Y., ed., Theory of Thermo-Viscoelasticity. Tianjin: Tianjin University Press, 2002.

    Google Scholar 

  21. Yan, W., Ying, J. and Chen, W.Q., A three-dimensional solution for laminated orthotropic rectangular plates with viscoelastic interfaces. Acta Mechanica Solida Sinica, 2006, 19(2): 181–188.

    Article  Google Scholar 

  22. Bogdanski, N., Wissen, M., Mollenbeck, S. and Scheer, H.C., Thermal imprint with negligibly low residual layer. Journal of Vacuum Science & Technology B, 2006, 24(6): 2998–3001.

    Article  Google Scholar 

  23. Zhuang, Z., You, X.C., Liao, J.H., Ceng, S., Sheng, X.P. and Liang, M.G., ed., Finite Element Analysis and Its Applications Based on ABAQUS. Beijing: Tsinghua University Press, 2008.

    Google Scholar 

  24. Lazzarino, F., Gourgon, C., Schiavone, P. and Perret, C., Mold deformation in nanoimprint lithography. Journal of Vacuum Science & Technology B, 2004, 202(6): 3318–3322.

    Article  Google Scholar 

  25. Jaszewski, R.W., Schift, H., Schnyder, B., Schneuwly, A. and Gröning, P., The deposition of anti-adhesive ultra-thin teflon-like films and their interaction with polymers during hot embossing. Applied Surface Science, 1999, 143(1–4): 301–308.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huimin Xie.

Additional information

Project supported by the National Basic Research Program of China (Grant No.2010CB631005), National Natural Science Foundation of China (Grant Nos.10625209, 10732080, 90916010), Beijing Natural Sciences Foundation (Grant No.3072007), and Program for New Century Excellent Talents (NCET) in Universities and Chinese Ministry of Education (Grant No.NCET-05-0059).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, J., Xie, H., Tang, M. et al. Optimum design of processing condition and experimental investigation of grating fabrication with hot embossing lithography. Acta Mech. Solida Sin. 22, 665–671 (2009). https://doi.org/10.1016/S0894-9166(09)60397-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0894-9166(09)60397-9

Key words

Navigation