Skip to main content
Log in

Explicit solution for G-band mode frequency of single-walled carbon nanotubes

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

G-band mode is one of the most important Raman modes of single-walled carbon nanotubes (SWCNTs). The vibrational frequency of the mode can be used to characterize SWCNTs. However, analytical expression that can link the frequency to the geometrical parameters of a SWCNT is to date not reported. Based on a molecular mechanics model, the analytical solution is obtained for G-band mode frequency of SWCNTs. The result calculated from the present solutions is in good agreement with the existing experimental and numerical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima, S., Helical microtubules of graphitic carbon. Nature, 1991, 354: 56–58.

    Article  Google Scholar 

  2. Bethune, D.S., Klang, C.H. and de Vries, M.S. et al., Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature, 1993, 363: 605–607.

    Article  Google Scholar 

  3. Iijima, S. and Ichihashi, T., Single-shell carbon nanotubes of 1 nm diameter. Nature, 1993, 363: 603–605.

    Article  Google Scholar 

  4. Wang, X., Lu, G. and Lu, Y.J., Buckling of embedded multi-walled carbon nanotubes under combined torsion and axial loading. International Journal of Solids and Structures, 2007, 44: 336–351.

    Article  Google Scholar 

  5. Li, H.J. and Guo, W.L., Transversely isotropic elastic properties of single-walled carbon nanotubes by a rectangular beam model for the C-C bonds. Journal of Applied Physics, 2008, 103: 103501.

    Article  Google Scholar 

  6. Wang, Y., Fang, D.N. and Soh, A.K. et al., A molecular mechanics approach for analyzing tensile nonlinear deformation behavior of single-walled carbon nanotubes. Acta Mechanica Sinica, 2007, 23: 663–671.

    Article  Google Scholar 

  7. Sun, C.Q., Liu, K.X. and Lu, G.X., Dynamic torsional buckling of multi-walled carbon nanotubes embedded in an elastic medium. Acta Mechanica Sinica, 2008, 24: 541–547.

    Article  Google Scholar 

  8. Wu, J., Hwang, K.C. and Song, J. et al., Material and structural instabilities of single-wall carbon nanotubes. Acta Mechanica Sinica, 2008, 24: 285–288.

    Article  Google Scholar 

  9. Chang, T. and Gao, H., Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. Journal of the Mechanics and Physics of Solids, 2003, 51: 1059–1074.

    Article  Google Scholar 

  10. Chang, T., Geng, J. and Guo, X., Chirality- and size-dependent elastic properties of single-walled carbon nanotubes. Applied Physics Letters, 2005, 87: 251929.

    Article  Google Scholar 

  11. Wang, L., Zheng, Q., Liu, J.Z., et al., Size dependence of the thin-shell model for carbon nanotubes. Physical Review Letters, 2005, 95: 105501.

    Article  Google Scholar 

  12. Dresselhaus, M.S., Dresselhaus, G. and Eklund, P., Science of Fullerenes and Carbon Nanotubes. Academic Press, 1996.

    Chapter  Google Scholar 

  13. Guo, W.L. and Guo, Y.F., The coupled effects of mechanical deformation and electronic properties in carbon nanotubes. Acta Mechanica Sinica, 2004, 20: 192–198.

    Article  Google Scholar 

  14. Heyd, R., Charlier, A. and McRae, E., Uniaxial-stress effects on the electronic properties of carbon nanotubes. Physical Review B, 1997, 55: 6820–6824.

    Article  Google Scholar 

  15. Rochefort, A., Salahub, D.R. and Avouris, P., The effect of structural distortions on the electronic structure of carbon nanotubes. Chemical Physics Letters, 1998, 297: 45–50.

    Article  Google Scholar 

  16. Mazzoni, M.S.C. and Chacham, H., Bandgap closure of a flattened semiconductor carbon nanotube: A first-principles study. Applied Physics Letters, 2000, 76: 1561–1563.

    Article  Google Scholar 

  17. Liu, B., Jiang, H. and Johnson, H.T. et al., The influence of mechanical deformation on the electrical properties of single wall carbon nanotubes. Journal of the Mechanics and Physics of Solids, 2004, 52: 1–26.

    Article  Google Scholar 

  18. Chang, T.C., Hou, J. and Guo, X.M., Reversible mechanical bistability of single-walled carbon nanotubes under axial strain. Applied Physics Letters, 2006, 88: 211906.

    Article  Google Scholar 

  19. Zou, J., Ji, B.H. and Feng, X.Q. et al., Self-assembly of single-walled carbon nanotubes into multiwalled carbon nanotubes in water: Molecular dynamics simulations. Nano Letters, 2006, 6: 430–434.

    Article  Google Scholar 

  20. Mintmire, J.W. and White, C.T., Electronic and structural properties of carbon nanotubes. Carbon, 1995, 33: 893–902.

    Article  Google Scholar 

  21. Chang, T., Explicit solution of the radial breathing mode frequency of single-walled carbon nanotubes. Acta Mechanica Sinica, 2007, 23: 159–162.

    Article  Google Scholar 

  22. Souza, M., Jorio, A. and Fantini, C. et al., Single- and double-resonance Raman G-band processes in carbon nanotubes. Physical Review B, 2004, 69: 241403.

    Article  Google Scholar 

  23. Dresselhaus, M.S. and Eklund, P.C., Phonons in carbon nanotubes. Advances in Physics, 2000, 49: 705–814.

    Article  Google Scholar 

  24. Dresselhaus, M.S., Dresselhaus, G. and Jorio, A. et al., Raman spectroscopy on isolated single wall carbon nanotubes. Carbon, 2002, 40: 2043–2061.

    Article  Google Scholar 

  25. Jorio, A., Pimenta, M.A. and Souza Filho, A.G. et al., Resonance Raman spectra of carbon nanotubes by cross-polarized light. American Physical Society: Physical Review Letters, 2003, 107403.

    Google Scholar 

  26. Jorio, A., Pimenta, M.A. and Fantini, C. et al., Advances in single nanotube spectroscopy: Raman spectra from cross-polarized light and chirality dependence of Raman frequencies. Carbon, 2004, 42: 1067–1069.

    Article  Google Scholar 

  27. Burghard, M., Electronic and vibrational properties of chemically modified single-wall carbon nanotubes. Surface Science Reports, 2005, 58: 1–109.

    Google Scholar 

  28. Chang, T., Radial breathing mode frequency of single-walled carbon nanotubes under strain. Applied Physics Letters, 2008, 93: 061901.

    Article  Google Scholar 

  29. Wang, C.Y., Ru, C.Q. and Mioduchowski, A., Pressure effect on radial breathing modes of multiwall carbon nanotubes. Journal of Applied Physics, 2005, 97: 024310.

    Article  Google Scholar 

  30. Bandow, S., Asaka, S. and Saito, Y. et al., Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes. Physical Review Letters, 1998, 80: 3779–3782.

    Article  Google Scholar 

  31. Saito, R., Takeya, T. and Kimura, T. et al. Raman intensity of single-wall carbon nanotubes. Physical Review B, 1998, 57: 4145–4153.

    Article  Google Scholar 

  32. Rao, AM., Richter, E. and Bandow, S. et al., Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science, 1997, 275: 187–191.

    Article  Google Scholar 

  33. Henrard, L., Hernandez, E. and Bernier, P. et al., van der Waals interaction in nanotube bundles: Consequences on vibrational modes. Physical Review B, 1999, 60: R8521–R4.

    Article  Google Scholar 

  34. Kahn, D. and Lu, J.P., Vibrational modes of carbon nanotubes and nanoropes. Physical Review B, 1999, 60: 6535.

    Article  Google Scholar 

  35. Kurti, J., Kresse, G. and Kuzmany, H., First-principles calculations of the radial breathing mode of singlewall carbon nanotubes. Physical Review B, 1998, 58: R8869.

    Article  Google Scholar 

  36. Sánchez-Portall, D., Artacho, E. and Soler, J.M., Ab initio structural, elastic, and vibrational properties of carbon nanotubes. Physical Review B, 1999, 59: 12678.

    Article  Google Scholar 

  37. Agrawal, B.K., Agrawal, S. and Srivastava, R., Ab initio study of small diameter (6, 6) armchair carbon nanoropes: Orientational dependent properties. Journal of Physics Condensed Matter, 2003, 15: 6931–6942.

    Article  Google Scholar 

  38. Jishi, R.A., Venkataraman, L. and Dresselhaus, M.S. et al., Phonon modes in carbon nanotubules. Chemical Physics Letters, 1993, 209: 77–82.

    Article  Google Scholar 

  39. Jorio, A., Saito, R. and Hafner, J.H. et al., Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Physical Review Letters, 2001, 86: 1118–1121.

    Article  Google Scholar 

  40. Dobardzic, E., Milosevic, I. and Nikolic, B. et al., Single-wall carbon nanotubes phonon spectra: Symmetry-based calculations. Physical Review B, 2003, 68: 045408.

    Article  Google Scholar 

  41. Longhurst, M.J. and Quirke, N., The radial breathing mode of carbon nanotubes. Mol Simulat, 2005, 31: 135–141.

    Article  Google Scholar 

  42. Rao, A.M., Chen, J. and Richter, E. et al., Effect of van der Waals interactions on the Raman modes in single walled carbon nanotubes. Physical Review Letters, 2001, 86: 3895–3898.

    Article  Google Scholar 

  43. Son, H.B., Hori, Y. and Chou, S.G. et al., Environment effects on the Raman spectra of individual singlewall carbon nanotubes: Suspended and grown on polycrystalline silicon. Applied Physics Letters, 2004, 85: 4744–4746.

    Article  Google Scholar 

  44. Izard, N., Riehl, D. and Anglaret, E., Exfoliation of single-wall carbon nanotubes in aqueous surfactant suspensions: A Raman study. Physical Review B, 2005, 71: 195417.

    Article  Google Scholar 

  45. Kurti, J., Zolyomi, V. and Kertesz, M. et al., The geometry and the radial breathing mode of carbon nanotubes: beyond the ideal behaviour. New Journal of Physics, 2003, 5: 125.

    Article  Google Scholar 

  46. Damnjanovic, M., Dobardzic, E and Milosevic, I., Chirality dependence of the radial breathing mode: a simple model. Journal of Physics Condensed Matterr, 2004, 16: L505–L508.

    Article  Google Scholar 

  47. Telg, H., Maultzsch, J. and Reich, S. et al., Chirality distribution and transition energies of carbon nanotubes. Physical Review Letters, 2004, 93: 177401.

    Article  Google Scholar 

  48. Lawler, H.M., Areshkin, D. and Mintmire, J.W. et al., Radial-breathing mode frequencies for single-walled carbon nanotubes of arbitrary chirality: First-principles calculations. Physical Review B, 2005, 72: 233403.

    Article  Google Scholar 

  49. Meyer, J.C., Paillet, M. and Michel, T. et al., Raman modes of index-identified freestanding single-walled carbon nanotubes. Physical Review Letters, 2005, 95: 217401.

    Article  Google Scholar 

  50. Popov, V.N. and Lambin, P., Radius and chirality dependence of the radial breathing mode and the G-band phonon modes of single-walled carbon nanotubes. Physical Review B, 2006, 73: 085407.

    Article  Google Scholar 

  51. Rols, S., Righi, A. and Alvarez, L. et al., Diameter distribution of single wall carbon nanotubes in nanobundles. The European Physical Journal B-Condensed Matter, 2000, 18: 201–205.

    Google Scholar 

  52. Xiao, Y. Li, Z.M. and Yan, X.H. et al., Curvature effect on the radial breathing modes of single-walled carbon nanotubes. Physical Review B, 2005, 71: 233405.

    Article  Google Scholar 

  53. Geng, J.Y. and Chang, T.C., Nonlinear stick-spiral model for predicting mechanical behavior of single-walled carbon nanotubes. Physical Review B, 2006, 74: 245428.

    Article  Google Scholar 

  54. Raravikar, N.R. Keblinski, P. and Rao, A.M. et al., Temperature dependence of radial breathing mode Raman frequency of single-walled carbon nanotubes. Physical Review B, 2002, 66: 235424.

    Article  Google Scholar 

  55. Brown, S.D.M., Jorio, A. and Dresselhaus, M.S. et al., Observations of the D-band feature in the Raman spectra of carbon nanotubes. Physical Review B, 2001, 64: 073403.

    Article  Google Scholar 

  56. Tuinstra, F. and Koenig, J.L., Raman spectrum of graphite. The Journal of Chemical Physics, 1970, 53: 1126–30.

    Article  Google Scholar 

  57. Souza, A.G., Jorio, A. and Samsonidze, G.G. et al. Competing spring constant versus double resonance effects on the properties of dispersive modes in isolated single-wall carbon nanotubes. Physical Review B, 2003, 67: 035427.

    Article  Google Scholar 

  58. Jorio, A., Pimenta, M.A. and Souza, A.G. et al., Characterizing carbon nanotube samples with resonance Raman scattering. New Journal of Physics, 2003, 5: 139.

    Article  Google Scholar 

  59. Jespersen, T.S., Raman Scattering in Carbon Nanotubes Copenhagen. University of Copenhagen, 2003: 185.

  60. Matthews, M.J., Pimenta, M.A. and Dresselhaus, G. et al., Origin of dispersive effects of the Raman D band in carbon materials. Physical Review B, 1999, 59: R6585–R6588.

    Article  Google Scholar 

  61. Kasuya, A., Sasaki, Y. and Saito, Y. et al., Evidence for size-dependent discrete dispersions in single-wall nanotubes. Physical Review Letters, 1997, 78: 4434–4437.

    Article  Google Scholar 

  62. Pimenta, M.A., Marucci, A. and Brown, S.D.M. et al., Resonant Raman effect in single-wall carbon nanotubes. Journal of materials research, 1998, 13: 2396–2404.

    Google Scholar 

  63. Damnjanovic, M., Milosevic, I. and Vukovic, T. et al., Full symmetry, optical activity, and potentials of singlewall and multiwall nanotubes. Physical Review B, 1999, 60: 2728–2739.

    Article  Google Scholar 

  64. Jorio, A., Dresselhaus, G. and Dresselhaus, M.S. et al., Polarized Raman study of single-wall semiconducting carbon nanotubes. Physical Review Letters, 2000, 85: 2617–2620.

    Article  Google Scholar 

  65. Alon, O.E., Number of Raman- and infrared-active vibrations in single-walled carbon nanotubes. Physical Review B, 2001, 63: 201403.

    Article  Google Scholar 

  66. Saito, R., Jorio, A. and Hafner, J.H. et al., Chirality-dependent G-band Raman intensity of carbon nanotubes. Physical Review B, 2001, 64: 085312.

    Article  Google Scholar 

  67. Jorio, A., Souza Filho, A.G. and Dresselhaus, G. et al., G-band resonant Raman study of 62 isolated singlewall carbon nanotubes. Physical Review B, 2002, 65: 155412.

    Article  Google Scholar 

  68. Hiura, H., Ebbesen, T.W. and Tanigaki, K. et al., Raman studies of carbon nanotubes. Chemical Physics Letters, 1993, 202: 509–12.

    Article  Google Scholar 

  69. Brown, S.D.M., Jorio, A. and Corio, P. et al., Origin of the Breit-Wigner-Fano lineshape of the tangential G-band feature of metallic carbon nanotubes. Physical Review B, 2001, 63: 155414.

    Article  Google Scholar 

  70. Chang, T.C., Geng, J.Y. and Guo, X.M., Prediction of chirality- and size-dependent elastic properties of single-walled carbon nanotubes via a molecular mechanics model. Proceedings of the Royal Society A, 2006, 462: 2523–40.

    Article  Google Scholar 

  71. Chang, T., Li, G. and Guo, X., Elastic axial buckling of carbon nanotubes via a molecular mechanics model. Carbon, 2005, 43: 287–294.

    Article  Google Scholar 

  72. Chang, T.C., Guo, W.L. and Guo, X.M., Buckling of multiwalled carbon nanotubes under axial compression and bending via a molecular mechanics model. Physical Review B, 2005, 72: 064101.

    Article  Google Scholar 

  73. Saito, R., Dresselhaus, M.S. and Dresselhaus, G., Physical Properties of Carbon Nanotubes. Imperial College Press, 1998.

  74. Jalalahmadi, B. and Naghdabadi, R., Finite element modeling of single-walled carbon nanotubes with introducing a new wall thickness. Journal of Physics: Conference Series, 2007, 61: 497–502.

    Google Scholar 

  75. Cornell, W.D., Cieplak, P. and Bayly, C.I. et al., A second generation force field for the simulation of proteins, nucleic acids, and organic molecules (vol 117, pg 5179, 1995). Journal of the American Chemical Society, 1996, 118: 2309.

    Article  Google Scholar 

  76. Mayo, S.L., Olafson, B.D. and Goddard, W.A. III, Dreiding: A generic force field for molecular simulations. Journal of Physical Chemistry (USA), 1990, 94: 8897–8909.

    Article  Google Scholar 

  77. Reich, S., Carbon Nanotubes: Vibrational and Electronic Properties. Berlin, 2002: 173.

  78. Thomsen, C. and Reich, S., Raman scattering in carbon nanotubes. Topics in Applied Physics, 2007, 108: 115–235.

    Article  Google Scholar 

  79. Reich, S., Jantoljak, H. and Thomsen, C., Shear strain in carbon nanotubes under hydrostatic pressure. Physical Review B, 2000, 61: R13389–R92.

    Article  Google Scholar 

  80. Wu, G., Zhou, J. and Dong, J., Raman modes of the deformed single-wall carbon nanotubes. Physical Review B, 2005, 72: 115411.

    Article  Google Scholar 

  81. Belin, T. and Epron, F., Characterization methods of carbon nanotubes: A review. Materials Science and Engineering-B, 2005, 119: 105–118.

    Article  Google Scholar 

  82. Wu, G. and Dong, J.M., Raman characteristic peaks induced by the topological defects of carbon nanotube intramolecular junctions. Physical Review B, 2006, 73: 245414.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tienchong Chang.

Additional information

Project supported by the National Natural Science Foundation of China (Nos.10872120 and 10732040), Shanghai Shuguang Program (08SG39), Shanghai Rising Star Program (No.09QH1401000), Innovation Program of Shanghai Municipal Education Commission (09ZZ97), and Shanghai Leading Academic Discipline Project (S30106).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Chang, T. Explicit solution for G-band mode frequency of single-walled carbon nanotubes. Acta Mech. Solida Sin. 22, 571–583 (2009). https://doi.org/10.1016/S0894-9166(09)60388-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0894-9166(09)60388-8

Key words

Navigation