Skip to main content
Log in

Mechanical performance of nano-CaCO3 filled polystyrene composites

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

Nano-CaCO3 incorporated polystyrene composites are compounded by twin-screw extrusion. Tensile and compact tensile tests show that the strength and toughness of polystyrene are decreased after the addition of nano-CaCO3 particles. Fracture surface analysis suggests that the defects induced by interfacial debonding and nano-filler agglomerations would be the key factors responsible for the declined strength and toughness. Nevertheless, it has to be stated, if the applied stress is lower than the ultimate strength, the rigid nanoparticles would still stiffen the polymer molecules, and resist polymer chain mobility. Hence, the improved tensile modulus and creep resistance can be obtained with the increasing contents of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ajayan, P.M., Schadler, L.S., Braun, P.V., Nanocomposite Science and Technology. Weinheim: Wiley- VCH, 2003.

    Book  Google Scholar 

  2. Pinnavaia, T.J., Beall, G.W., Polymer-clay Nanocomposites. New York: Wiley, 2001.

    Google Scholar 

  3. Deng, F., Zheng, Q.S., Interaction models for effective thermal and electric conductivity of carbon nanotube composites. Acta Mechanica Solida Sinica, 2009, 22(1): 1–16.

    Article  Google Scholar 

  4. Móczó, J., Pukánszky, B., Polymer micro and nanocomposites: structure, interactions, properties. Journal of Industrial and Engineering Chemistry, 2008, 14(5): 535–563.

    Article  Google Scholar 

  5. Fu, S.Y., Feng, X.Q., Lauke, B., Mai, Y.W., Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Composites Part B: Engineering, 2008, 39(6): 933–961.

    Article  Google Scholar 

  6. Tjong, S.C., Structural and mechanical properties of polymer nanocomposites. Materials Science and Engineering: R:Reports, 2006, 53(3–4): 73–197.

    Article  Google Scholar 

  7. Schmidt, D., Shah, D., Giannelis, E.P., New advances in polymer/layered silicate nanocomposites. Current Opinion in Solid State and Materials Science, 2002, 6(3): 205–212.

    Article  Google Scholar 

  8. Phang, I.Y., Liu, T.X., Mohamed, A., Pramoda, K.P., Chen, L., Shen, L., et al., Morphology, thermal and mechanical properties of nylon 12/organoclay nanocomposites prepared by melt compounding. Polymer International, 2005, 54(2): 135–176.

    Article  Google Scholar 

  9. Krook, M., Morgan, G., Hedenqvist, M.S., Barrier and mechanical properties of injection molded montmorillonite/polyesterarnide nanocomposites. Polymer Engineering and Science, 2005, 45(1): 135–141.

    Article  Google Scholar 

  10. Tjong, S.C., Bao, S.P., Impact fracture toughness of polyamide-6/montmorillonite nanocomposites toughened with a maleated styrene/ethylene butylene/styrene elastomer. Journal of Polymer Science Part B: Polymer Physics, 2005, 43(5): 585–595.

    Article  Google Scholar 

  11. Yang, J.L., Zhang, Z., Zhang, H., The essential work of fracture of polyamide 66 filled with TiO2 nanoparticles. Composites Science and Technology, 2005, 65(15–16): 2374–2379.

    Article  Google Scholar 

  12. Tsai, J., Sun, C.T., Effect of platelet dispersion on the load transfer efficiency innanoclay composites. Journal of Composite Materials, 2004, 38(7): 567–579.

    Article  Google Scholar 

  13. Garcia, M., van Vliet, G., Jain, S., Schrauwen, B.A.G., Sarkissov, A., van Zyl, W.E., et al. Polypropylene/SiO2 nanocomposites with improved mechanical properties. Reviews on Advanced Materials Science, 2004, 6(2): 169–175.

    Google Scholar 

  14. Liu, L.M., Qi, Z.N., Zhu, X.G., Studies on nylon 6/clay nanocomposites by melt-interaction process. Journal of Applied Polymer Science, 2004, 71(7): 1133–1138.

    Article  Google Scholar 

  15. Cho, J.W., Paul, D.R., Nylon 6 nanocomposites by melt compounding. Polymer, 2001, 42(3): 1083–1094.

    Article  Google Scholar 

  16. Lin, Y., Chen, H., Chan, C.M., Wu, J., High impact toughness polypropylene/CaCO3 nanocomposites and the toughening mechanism. Macromolecules, 2008, 41(23): 9204–9213.

    Article  Google Scholar 

  17. Chan, C.M., Wu, J., Li, J.X., Cheung, Y.K., Polypropylene/calcium carbonate nanocomposites. Polymer, 2002, 43(10): 2981–2992.

    Article  Google Scholar 

  18. Yang, J.L., Zhang, Z., Friedrich, K., Schlarb, A.K., Creep resistant polymer nanocomposites reinforced with multiwalled carbon nanotubes. Macromolecular Rapid Communications, 2007, 28(8): 955–961.

    Article  Google Scholar 

  19. Yang, J.L., Zhang, Z., Schlarb, A.K., Friedrich, K., On the characterization of tensile creep resistance of polyamide 66 nanocomposites. Part I: Experimental results and general discussions. Polymer, 2006, 47(8): 2794–2804.

    Google Scholar 

  20. Yang, J.L., Zhang, Z., Schlarb, A.K., Friedrich, K., On the characterization of tensile creep resistance of polyamide 66 nanocomposites. Part II: Modelling and prediction of long-term performance. Polymer, 2006, 47(19): 6745–6758.

    Article  Google Scholar 

  21. Siengchin, S., Kocsis, J.K., Creep behavior of polystyrene/fluorohectorite micro- and nanocomposites. Macromolecular Rapid Communications, 2006, 27(24): 2090–2094.

    Article  Google Scholar 

  22. Vlasveld, D.P.N., Bersee, H.E.N., Pickem, S.J., Creep and physical aging behavior of PA6 nanocomposites. Polymer, 2005, 46(26): 12539–12545.

    Article  Google Scholar 

  23. Pukanszky, B., Voros, G., Mechanism of interfacial interactions in particulate filled composites. Composite Interfaces, 1993, 1(5): 411–427.

    Google Scholar 

  24. Reynaud, E., Jouen, T., Gauthier, C., Vigier, G., Varlett, J., Nanofillers in polymeric matrix: a study on silica reinforced PA. Polymer, 2001, 42(21):8759–8768.

    Article  Google Scholar 

  25. Zhang, Q.X., Yu, Z.Z., Xie, X.L., Mai, Y.W., Crystallization and impact energy of polypropylene/CaCO3 nanocomposites with nonionic modifier. Polymer, 2004, 45(17): 5985–5994.

    Article  Google Scholar 

  26. Ruan, W.H., Zhang, M.Q., Rong, M.Z., Friedrich, K., Polypropylene composites filled with in-situ grafting polymerization modified nano-silica particles. Journal of Materials Science, 2004, 39(10): 3475–3478.

    Article  Google Scholar 

  27. Wu, D.Y., Svazas, A., Micro- and Nano-sized calcuium carbonate toughened polystyrene. Journal of Nanoscience and Nanotechnology, 2006, 6(12): 2919–3922.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Zhang.

Additional information

This work was partly sponsored by the National Key Research Program of China (No.2006CB932304), a Key International Collaboration Project (No.2008DFA51220) of the China Ministry of Science and Technology and a Key Item of the Knowledge Innovation Project of Chinese Academy of Sciences (No.KJCX1.YW.07).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Y., Liu, L. & Zhang, Z. Mechanical performance of nano-CaCO3 filled polystyrene composites. Acta Mech. Solida Sin. 22, 555–562 (2009). https://doi.org/10.1016/S0894-9166(09)60386-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0894-9166(09)60386-4

Key words

Navigation