Acta Mechanica Solida Sinica

, Volume 29, Issue 1, pp 95–110 | Cite as

3D Micromechanical Modeling of Failure and Damage Evolution in Dual Phase Steel Based on a Real 2D Microstructure

  • M. R. Ayatollahi
  • A. Ch. Darabi
  • H. R. Chamani
  • J. Kadkhodapour


A plate of dual phase steel was produced from low carbon steel with intercritical annealing treatment. Its optically determined surface microstructure was utilized to construct three different microstructural models. To describe the ductile damage in the ferritic matrix, the Gurson-Tvergaard-Needleman model was used with the failure in the martensite phase being ignored. The numerical results obtained for the mechanism of void initiation and coalescence were compared with the experimental observations. The numerical results obtained from the randomly extruded 3D model showed a significantly better agreement with the experimental ones than those obtained from the 2D model or the uniformly extruded 3D model.

Key Words

dual phase steel 3D model microstructure micromechanical modeling GTN damage model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Furukawa, T., Tanino, M., Morikawa, H. and ENDO, M., Effects of composition and processing factors on the mechanical properties of as-hot-rolled dual-phase steels. Transactions of the Iron and Steel Institute of Japan, 1984, 24(2): 113–121.CrossRefGoogle Scholar
  2. 2.
    Ramazani, A., Mukherjee, K., Prahl, U. and Bleck, W., Modelling the effect of microstructural banding on the flow curve behaviour of dual-phase (DP) steels. Computational Materials Science, 2012, 52(1): 46–54.CrossRefGoogle Scholar
  3. 3.
    Paul, S.K., Real microstructure based micromechanical model to simulate microstructural level deformation behavior and failure initiation in DP 590 steel. Materials & Design, 2013, 44: 397–406.CrossRefGoogle Scholar
  4. 4.
    Kadkhodapour, J., Butz, A. and Ziaei Rad, S., Mechanisms of void formation during tensile testing in a commercial, dual-phase steel. Acta Materialia, 2011, 59(7): 2575–2588.CrossRefGoogle Scholar
  5. 5.
    Ahmad, E., Manzoor, T., Ali, K.L. and Akhter, J., Effect of microvoid formation on the tensile properties of dual-phase steel. Journal of materials engineering and performance, 2000, 9(3): 306–310.CrossRefGoogle Scholar
  6. 6.
    Tasan, C., Hoefnagels, J. and Geers, M., A critical assessment of indentation-based ductile damage quantification. Acta materialia, 2009, 57(17): 4957–4966.CrossRefGoogle Scholar
  7. 7.
    Papaefthymiou, S., Bleck, W., Prahl, U., Acht, C., Sietsma, J. and van der Zwaag, S., Micromechanical damage simulations of TRIP steels. Mater Sci Forum, 2003, 426–432: 1355–1360.Google Scholar
  8. 8.
    Uthaisangsuk, V., Prahl, U. and Bleck, W., Micromechanical modelling of damage behaviour of multiphase steels. Computational Materials Science, 2008, 43(1): 27–35.CrossRefGoogle Scholar
  9. 9.
    Sun, X., Choi, K.S., Liu, W.N. and Khaleel, M.A., Predicting failure modes and ductility of dual phase steels using plastic strain localization. International Journal of Plasticity, 2009, 25(10): 1888–1909.CrossRefGoogle Scholar
  10. 10.
    Sun, X., Choi, K.S., Soulami, A., Liu, W.N. and Khaleel, M.A., On key factors influencing ductile fractures of dual phase (DP) steels. Materials Science and Engineering: A, 2009, 526(1): 140–149.CrossRefGoogle Scholar
  11. 11.
    Choi, K.S., Liu, W.N., Sun, X. and Khaleel, M.A., Microstructure-based constitutive modeling of TRIP steel: Prediction of ductility and failure modes under different loading conditions, Acta Materialia, 2009, 57(8): 2592–2604.CrossRefGoogle Scholar
  12. 12.
    Uthaisangsuk, V., Prahl, U. and Bleck, W., Failure modeling of multiphase steels using representative volume elements based on real microstructures. Procedia Engineering, 2009, 1(1): 171–176.CrossRefGoogle Scholar
  13. 13.
    West, O., Lian, J., Müstermann, S. and Bleck, W., Numerical determination of the damage parameters of a Dual-phase sheet steel. ISIJ international, 2012, 52(4): 743–752.CrossRefGoogle Scholar
  14. 14.
    Ramazani, A., Mukherjee, K., Quade, H., Prahl, U. and Bleck, W., Correlation between 2D and 3D flow curve modelling of DP steels using a microstructure-based RVE approach. Materials Science and Engineering: A, 2013, 560: 129–139.CrossRefGoogle Scholar
  15. 15.
    Sodjit, S. and Uthaisangsuk, V., Microstructure based prediction of strain hardening behavior of dual phase steels. Materials & Design, 2012, 41: 370–379.CrossRefGoogle Scholar
  16. 16.
    E562-08, A., Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count, 2008.Google Scholar
  17. 17.
    Lawson, R., Matlock, D. and Krauss, G., The effect of microstructure on the deformation behavior and mechanical properties of a dual-phase steel. In: Fundamentals of Dual-Phase Steels, The Metallurgical Society of AMIE, 1981: 347–381.Google Scholar
  18. 18.
    Rodriguez, R.M. and Gutiérez, I., Unified formulation to predict the tensile curves of steels with different microstructures. Mater Sci Forum, 2003, 426–432: 4525–4530.Google Scholar
  19. 19.
    Thomser, C., Prahl, U., Vegter, H. and Bleck, W., Modelling the mechanical properties of multiphase steels, Computer Methods in Materials Science, 2007, 7: 42–46.Google Scholar
  20. 20.
    Kadkhodapour, J., Butz, A., Ziaei-Rad, S. and Schmauder, S., A micro mechanical study on failure initiation of dual phase steels under tension using single crystal plasticity model. International Journal of Plasticity, 2011, 27(7): 1103–1125.CrossRefGoogle Scholar
  21. 21.
    Gurson, A.L., Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media. Journal of engineering materials and technology, 1977, 99(1): 2–15.CrossRefGoogle Scholar
  22. 22.
    Needleman, A. and Tvergaard, V., An analysis of ductile rupture modes at a crack tip. Journal of the Mechanics and Physics of Solids, 1987, 35(2): 151–183.CrossRefGoogle Scholar
  23. 23.
    Tvergaard, V. and Needleman, A., Analysis of the cup-cone fracture in a round tensile bar. Acta metallurgica, 1984, 32(1): 157–169.CrossRefGoogle Scholar
  24. 24.
    Tvergaard, V., On localization in ductile materials containing spherical voids. International Journal of Fracture, 1982, 18(4): 237–252.Google Scholar
  25. 25.
    Faleskog, J., Gao, X. and Shih, C.F., Cell model for nonlinear fracture analysis—I. Micromechanics calibration. International Journal of Fracture, 1998, 89(4): 355–373.CrossRefGoogle Scholar
  26. 26.
    Vajragupta, N., Uthaisangsuk, V., Schmaling, B., Müstermann, S., Hartmaier, A. and Bleck, W., A micromechanical damage simulation of dual phase steels using XFEM. Computational Materials Science, 2012, 54: 271–279.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2016

Authors and Affiliations

  • M. R. Ayatollahi
    • 1
  • A. Ch. Darabi
    • 1
  • H. R. Chamani
    • 1
  • J. Kadkhodapour
    • 1
  1. 1.Fatigue and Fracture Lab., Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical EngineeringIran University of Science and TechnologyNarmak, TehranIran

Personalised recommendations