Acta Mechanica Solida Sinica

, Volume 29, Issue 6, pp 596–609 | Cite as

Damage Evolution and Crack Propagation in Semicircular Bending Asphalt Mixture Specimens

  • Guowei Zeng
  • Xinhua Yang
  • Long Chen
  • Fan Bai


The damage and fracture behaviors of semicircular bending (SCB) asphalt mixture specimens with different orientation notches are experimentally and numerically investigated. In the numerical simulations, asphalt mixture is modeled as a two-phase material, namely a mix of coarse aggregates and asphalt mastic, and the mechanical behavior of asphalt mastic is characterized with the damage constitutive model and the damage-based fracture criterion. Some SCB experiments are performed on the asphalt mixture specimens with different orientation notches to validate the numerical method. Finally, the effects of notch orientation and aggregate distribution on crack path, damage distribution, and the load vs. displacement relation are numerically evaluated.

Key Words

semicircular bending heterogeneous model damage notch orientation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ye, Y., Yang, X.H. and Chen, C.Y., Modified Schapery’s model for asphalt sand. Journal of Engineering Mechanics-ASCE, 2010, 136(4): 448–454.CrossRefGoogle Scholar
  2. 2.
    Im, S., Ban, H. and Kim, Y., Characterization of mode-I and mode-II fracture properties of fine aggregate matrix using a semicircular specimen geometry. Construction and Building Materials, 2014, 52: 413–421.CrossRefGoogle Scholar
  3. 3.
    Wang, H.N., Dang, Z.X., Li, L. and You, Z.P., Analysis on fatigue crack growth laws for crumb rubber modified (CRM) asphalt mixture. Construction and Building Materials, 2013, 47: 1342–1349.CrossRefGoogle Scholar
  4. 4.
    Chandan, C., Sivakumar, K. and Masad, E., Application of imaging techniques to geometry analysis of aggregate particles. Journal of Computing in Civil Engineering, 2004, 18(1): 75–82.CrossRefGoogle Scholar
  5. 5.
    You, Z.P. and Buttlar, W.G., Discrete element modeling to predict the modulus of asphalt concrete mixtures. Journal of Materials in Civil Engineering-ASCE, 2004, 16(2): 140–146.CrossRefGoogle Scholar
  6. 6.
    Xu, R., Yang, X.H., Yin, A.Y., Yang, S.F. and Ye, Y., A three-dimensional aggregate generation and packing algorithm for modeling asphalt mixture with graded aggregates. Journal of Mechanics, 2010, 26(2): 165–171.CrossRefGoogle Scholar
  7. 7.
    Yin, A.Y., Yang, X.H., Gao, H. and Zhu, H.P., Tensile fracture simulation of random heterogeneous asphalt mixture with cohesive crack model. Engineering Fracture Mechanics, 2012, 92: 40–55CrossRefGoogle Scholar
  8. 8.
    Zeng, G.W., Yang, X.H., Yin, A.Y. and Bai, F., Simulation of damage evolution and crack propagation in three-point bending pre-cracked asphalt mixture beam. Construction and Building Materials, 2014, 55: 323–332.CrossRefGoogle Scholar
  9. 9.
    Xiang, M.J., Yu, Z.B. and Guo, W.L., Characterization of three-dimensional crack border fields in creeping solids. International Journal of Solids and Structures. 2011, 48(19): 2695–2705.CrossRefGoogle Scholar
  10. 10.
    Xiang, M.J. and Guo, W.L., Formulation of the stress fields in power law solids ahead of three-dimensional tensile cracks. International Journal of Solids and Structures, 2013, 50(20–21): 3067–3088.CrossRefGoogle Scholar
  11. 11.
    Chen, J.K., Huang, Z.P and Yuan, M., A constitutive theory of particulate-reinforced viscoelastic materials with partially debonded microvoids. Computational Materials Science, 2008, 41(3): 334–343.CrossRefGoogle Scholar
  12. 12.
    Chen, J.K., Huang, Z.P. and Zhu, J., Size effect of particles on the damage dissipation in nanocomposites. Composites Science and Technology, 2007, 67(14): 2990–2996.CrossRefGoogle Scholar
  13. 13.
    Landis, E.N., Nagy, E.N. and Keane, D.T., Microstructure and fracture in three dimensions. Engineering Fracture Mechanics, 2003, 70(7): 911–925.CrossRefGoogle Scholar
  14. 14.
    Kim, H. and Buttlar, W.G., Discrete fracture modeling of asphalt concrete. Journal of Solids and Structures, 2009, 46(13): 2593–2604.CrossRefGoogle Scholar
  15. 15.
    Yin, A.Y., Yang, X.H., Zeng, G.W. and Gao, H., Fracture simulation of pre-cracked heterogeneous asphalt mixture beam with movable three-point bending load. Construction and Building Materials, 2014, 65: 232–242.CrossRefGoogle Scholar
  16. 16.
    Mashayekhi, M., Ziaei-Rad, S., Parvizian, J., Niklewicz, J. and Hadavinia, H., Ductile crack growth based on damage criterion: Experimental and numerical studies. Mechanics of Materials, 2007, 39: 623–636.CrossRefGoogle Scholar
  17. 17.
    Zhao, Y.Q., Permanent deformation characterization of asphalt concrete using a viscoelastoplastic model. PhD Thesis, North Carolina State University, 2002.Google Scholar
  18. 18.
    Uzan, J., Viscoelastic-viscoplastic model with damage for asphalt concrete. Journal of Materials in Civil Engineering-ASCE, 2005, 17(5): 528–534.CrossRefGoogle Scholar
  19. 19.
    Underwood, S.B. and Kim, R.Y., Viscoelastoplastic continuum damage model for asphalt concrete in tension. Journal of Engineering Mechanics-ASCE, 2011, 137(11): 732–739.CrossRefGoogle Scholar
  20. 20.
    Wagoner, M.P., Buttlar, W.G. and Paulino, G.H., Development of a single-edge notched beam test for asphalt concrete mixtures. Journal of Testing and Evaluation, 2005, 33(6): 452–460.Google Scholar
  21. 21.
    Marasteanu, M.O., Dai, S.T., Labuz, J.F. and Li, X., Determining the low-temperature fracture toughness of asphalt mixtures. Transportation Research Record Journal of the Transportation Research Board, 2002, 1789(1): 191–199.CrossRefGoogle Scholar
  22. 22.
    Roque, R., Zhang, Z. and Sankar, B., Determination of crack growth rate parameters of asphalt mixtures using the superpave IDT. Journal of the Association of Asphalt Paving Technologists, 1999, 68: 404–433.Google Scholar
  23. 23.
    Roque, R., Birgisson, B., Sangpetngam, B. and Zhang, A., Hot Mix asphalt fracture mechanics: A fundamental crack growth law for asphalt mixtures. Journal of the Association of Asphalt Paving Technologists, 2001, 71: 816–827.Google Scholar
  24. 24.
    Kim, J. and West, R.C., Application of the viscoelastic continuum damage model to the indirect tension test at a single temperature. Journal of Engineering Mechanics-ASCE, 2010, 136(4): 496–505.CrossRefGoogle Scholar
  25. 25.
    Wagoner, M.P., Buttlar, W.G. and Paulino, G.H., Disk-shaped compact tension test for asphalt concrete fracture. Experimental Mechanics, 2005, 45(3): 270–277.CrossRefGoogle Scholar
  26. 26.
    Wagoner, M.P., Buttlar, W.G., Paulino, G.H. and Blankenship, P., Investigation of the fracture resistance of hot-mix asphalt concrete using a disk-shaped compact tension test. Transportation Research Record Journal of the Transportation Research Board, 2005, 1929(1): 183–192.CrossRefGoogle Scholar
  27. 27.
    Li, X.J., Braham, A.F., Marasteanu, M.O., Buttlar, W.G. and Williams, R.C., Effect of factors affecting fracture energy of asphalt concrete at low temperature. Road Materials and Pavement Design, 2008, 9(1): 397–416 (special issue).CrossRefGoogle Scholar
  28. 28.
    Molenaar, A.A.A., Scarpas, A.A., Liu, X. and Erkens, S., Semicircular bending test, simple but useful? Asphalt Paving Technology: Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions, 2002, 71: 795–815.Google Scholar
  29. 29.
    Ameri, M., Mansourian, A., Pirmohammad, S., Aliha, M.R.M. and Ayatollahi, M.R., Mixed mode fracture resistance of asphalt concrete mixtures. Engineering Fracture Mechanics, 2012, 93: 153–167.CrossRefGoogle Scholar
  30. 30.
    Li, X. and Marasteanu, M.O., Using semicircular bending test to evaluate low temperature fracture resistance for asphalt concrete. Experimental Mechanics, 2010, 50(7): 867–876.CrossRefGoogle Scholar
  31. 31.
    Aliha, M.R.M., Behbahani, H., Fazaeli, H. and Rezaifar, M.H., Study of characteristic specification on mixed mode fracture toughness of asphalt mixtures. Construction and Building Materials, 2014, 54: 623–635.CrossRefGoogle Scholar
  32. 32.
    Bandyopadhyaya, R., Das, A. and Basu, S., Numerical simulation of mechanical behaviour of asphalt mix. Construction and Building Materials, 2008, 22(6): 1051–1058.CrossRefGoogle Scholar
  33. 33.
    Kim, Y. and Aragão, F.T.S., Microstructure modeling of rate-dependent fracture behavior in bituminous paving mixtures. Finite Elements in Analysis and Design, 2013, 63: 23–32.MathSciNetCrossRefGoogle Scholar
  34. 34.
    Borst, R.D., Fracture in quasi-brittle materials: A review of continuum damage-based approaches. Engineering Fracture Mechanics, 2002, 69(2): 95–112.CrossRefGoogle Scholar
  35. 35.
    Mazars, J. and Pijaudier-Cabot, G., Continuum damage theory-application to concrete. Journal of Engineering Mechanics-ASCE, 1989, 115(2): 345–365.CrossRefGoogle Scholar
  36. 36.
    Yang, X.H., Chen, C.Y., Hu, Y.T. and Wang, C., Damage analysis and fracture criteria for piezoelectric ceramics. International Journal of Non-Linear Mechanics, 2005, 40(9): 1204–1213.CrossRefGoogle Scholar
  37. 37.
    Sun, Y., Liu, J. and Yu, T., Coupling analysis of fracture mechanics and damage mechanics for fiber-reinforced asphalt concrete pavement. In: ASME 2006 International Mechanical Engineering Congress and Exposition, 2006: 951–960.Google Scholar
  38. 38.
    Yang, X.H., Cao, W.Z. and Tian, X.B., Simulation of crack propagation in three-point bending piezoelectric beam based on three-dimensional anisotropic piezoelectric damage mechanics. Journal of Mechanics, 2011, 27(4): 521–531.CrossRefGoogle Scholar
  39. 39.
    Ayatollahi, M.R., Aliha, M.R.M. and Hassani, M.M., Mixed mode brittle fracture in PMMA-An experimental study using SCB specimens. Materials Science and Engineering: A, 2006, 417(1–2): 348–356.CrossRefGoogle Scholar
  40. 40.
    Guo, W.L., Elastoplastic three dimensional crack border field—I. Singular structure of the field. Engineering Fracture Mechanics, 1993, 46(1): 93–104.MathSciNetCrossRefGoogle Scholar
  41. 41.
    Guo, W.L., Elasto-plastic three-dimensional crack border field—III. Fracture parameters. Engineering Fracture Mechanics, 1995, 51(1): 51–71.CrossRefGoogle Scholar
  42. 42.
    Ridha, H. and Thurner, P.J., Finite element prediction with experimental validation of damage distribution in single trabecular during three-point bending tests. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 27: 94–106.CrossRefGoogle Scholar
  43. 43.
    Yang, X.H., Chen, C.Y. and Hu, Y.T., Analysis of damage near a conducting crack in a piezoelectric ceramic. Acta Mechanica Solida Sinica, 2003, 16(2): 147–154.Google Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2016

Authors and Affiliations

  1. 1.School of Civil Engineering and MechanicsHuazhong University of Science and TechnologyWuhanChina
  2. 2.School of ScienceWuhan University of Science and TechnologyWuhanChina

Personalised recommendations