Acta Mechanica Solida Sinica

, Volume 29, Issue 5, pp 527–535 | Cite as

A Refined Theory of Axisymmetric Poroelastic Circular Cylinder

  • Di Wu
  • Xiangyong Li
  • Lianying Yu
  • Baosheng Zhao
  • Yang Gao
Article

Abstract

A refined theory of axisymmetric deformation of an isotropic poroelastic circular cylinder in a steady-state is presented directly by utilizing the general solutions and Lur’e method without any advance hypothesis. The refined equations are derived under non-homogenous boundary conditions, and the approximate solutions are obtained by omitting higher-order terms. The all-inclusive refined equations and approximate solutions constitute the refined theory of circular cylinders. Correlative examples are brought up to analyze influences of liquid-solid coupling properties on the mechanical behavior of poroelastic materials. Moreover, the present results are converted into those of homologous pure elastic problem directly.

Key Words

axisymmetric deformation isotropic porous media the refined theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Terzaghi, K.V., Die berechnung der durchlässigkeit des tones aus dem verlauf der hydromechanischen span-nungserscheinungen. Sitzungsber, Akad. Wiss. (Wien), Math.-Naturwiss. KI., Abt. IIa, 1923, 132: 125–138.Google Scholar
  2. 2.
    Terzaghi, K., Theorerical Soil Mechanics. Wiley, New York, 1943.CrossRefGoogle Scholar
  3. 3.
    Boit, M.A., General solutions of three-dimensional consolidation. Journal of Applied Physics, 1941, 12: 155–164.CrossRefGoogle Scholar
  4. 4.
    Zhao, B.S., Lu, G.X. and Wu, X.E., Axisymmetric general steady-state solution for poroelastic media. Appled Mechanics and Materials, 2013, 341–342: 96–99.CrossRefGoogle Scholar
  5. 5.
    Senjuntichai, T. and Rajapakse, R.K.N.D., Exact stiffness method lor quasi-statics of a multi-layered poroelastic medium. International Journal of Solids and Structures, 1995, 32(11): 1535–1553.CrossRefMATHGoogle Scholar
  6. 6.
    Singh, S.J. and Rani, S., Plane strain deformation of a multi-layered poroelastic half-space by surface loads. Journal of Earth System Science, 2006, 115(6): 685–694.CrossRefGoogle Scholar
  7. 7.
    Zheng, P., Ding, B.Y., Zhao, S.X and Ding, D., 3D dynamic Green’s functions in a multilayered poroelastic half-space. Applied Mathematical Modelling, 2013, 37(24): 10203–10219.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Pan, E., Dislocation in an infinite poroelastic medium. Acta Mechanica, 1991, 87: 105–115.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Kumar, R., Rani, S. and Singh, S.J., Quasi-static deformation caused by a long tensile dislocation in an elastic half-space in welded contact with a poroelastic half-space. Journal of Porous Media, 2012, 15(3): 283–291.CrossRefGoogle Scholar
  10. 10.
    Pan, E. and Maier, G., A symmetric boundary integral approach to transient poroelastic analysis. Computational Mechanics, 1997, 19: 169–178.CrossRefMATHGoogle Scholar
  11. 11.
    Jin, B., Yue, Z.Q. and Tham, L.G., Stresses and excess pore pressure induced in saturated poroelastic half space by moving line load. Soil Dynamics and Earthquake Engineering, 2004, 24: 25–33.CrossRefGoogle Scholar
  12. 12.
    Li, X.Y., Chen, W.Q. and Wang, H.Y., General steady-state solutions for transversely isotropic thermoporoelastic media in three dimensions and its application. European Journal of Mechanics A/Solids, 2010, 29: 317–326.CrossRefGoogle Scholar
  13. 13.
    Hou, P.F., Zhao, M. and Ju, J.W., Three-dimensional Green’s functions for transversely isotropic thermoporoelastic bimaterials. Journal of Applied Geophysics, 2013, 95: 36–46.CrossRefGoogle Scholar
  14. 14.
    Detournay, E. and Cheng, A.H.D., Fundamentals of Poroelasticity 1, 1993.CrossRefGoogle Scholar
  15. 15.
    Selvadurai, A.P., The analytical method in geomechanics. Applied Mechanics Reviews, 2007, 60(3): 87–106.CrossRefGoogle Scholar
  16. 16.
    Suvorov, A.P., Problem of the consolidation of a laterally loaded radially-drained poroelastic cylinder. The Quarterly Journal of Mechanics and Applied Mathematics, 2014, 67(2): 159–173.MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Cheng, S., Elasticity theory of plates and a refined theory. Journal of Applied Mechanics, 1979, 46(3): 644–650.MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Lur’e, A.I., Three-dimensional Problems of the Theory of Elasticity. Interscience Publishers, New York, 1964.MATHGoogle Scholar
  19. 19.
    Gao, Y. and Zhao, B.S., The refined theory for a magnetoelastic body-I: plate problems. International Journal of Applied Electromagnetics and Mechanics, 2009, 29: 1–14.Google Scholar
  20. 20.
    Gao, Y. and Xu, B.X., The refined theory for a magnetoelastic body-II: plane problems. International Journal of Applied Electromagnetics and Mechanics, 2010, 32: 31–46.Google Scholar
  21. 21.
    Gao, Y. and Zhao, B.S., The refined theory of thermoelastic plane problems. Journal of Thermal Stresses, 2007, 30(12): 1233–1248.CrossRefGoogle Scholar
  22. 22.
    Xu, S.P. and Wang, W., A refined theory of transversely isotropic piezoelectric plates. Acta Mechanica, 2004, 171(1–2): 15–27.MATHGoogle Scholar
  23. 23.
    Lu, G.X., Zhao, B.S. and Wu, X.E., Refined theory and decomposed theorem of transversely isotropic thermoporoelastic beam. Comptes Rendus Mecanique, 2013, 341(9–10): 701–708.CrossRefGoogle Scholar
  24. 24.
    Zhao, B.S., Zhao, Y.T., Gao, Y. and Zhang, D.C., A deformation theory without ad hoc assumption of an axisymmetric circular cylinder. Acta Mechanica, 2011, 216: 37–47.CrossRefMATHGoogle Scholar
  25. 25.
    Zhao, B.S. and Wu, D., The refined theory of axisymmetric circular cylinder in one-dimensional hexagonal quasicrystals. Appled Mechanics and Materials, 2012, 217–219: 1421–1424.Google Scholar
  26. 26.
    Zhao, B.S. and Wu, D., The refined analysis of axisymmetric transversely isotropic cylinder under radial direction surface loading. Appled Mechanics and Materials, 2012, 198–199: 212–215.Google Scholar
  27. 27.
    Wang, H.F., Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology. Princeton University Press, New Jersey, 2000.Google Scholar
  28. 28.
    Andrews, G.E., Askey, R. and Roy, R., Special Functions. Cambridge: Cambridge University Press, 1999.CrossRefMATHGoogle Scholar
  29. 29.
    Zhou, X.X. and Ghassemi, A., Three-dimensional poroelastic analysis of a pressurized natural fracture. International Journal of Rock Mechanics and Mining Sciences, 2011, 48: 527–534.CrossRefGoogle Scholar
  30. 30.
    Tan, X. and Konietzky, H., Numerical study of variation in Biot’s coefficient with respect to microstructure of rocks. Tectonophysics, 2014, 610: 159–171.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2016

Authors and Affiliations

  • Di Wu
    • 2
  • Xiangyong Li
    • 3
  • Lianying Yu
    • 1
  • Baosheng Zhao
    • 4
  • Yang Gao
    • 1
  1. 1.College of ScienceChina Agricultural UniversityBeijingChina
  2. 2.College of EngineeringChina Agricultural UniversityBeijingChina
  3. 3.Zhejiang Southeast Grid Co., LTD.Zhejiang HangzhouChina
  4. 4.School of Mechanical Engineering and AutomationUniversity of Science and Technology LiaoningAnshanChina

Personalised recommendations