Acta Mechanica Solida Sinica

, Volume 28, Issue 6, pp 618–625 | Cite as

Effects of SI, N and B Doping on the Mechanical Properties of Graphene Sheets

  • Tongwei Han
  • Ying Luo
  • Chengyuan Wang


Molecular dynamics (MD) simulations were performed to stretch the rectangular graphene sheets doped with silicon, nitrogen or boron atoms. Young’s modulus, ultimate stress (strain) and energy absorption were measured for the graphene sheets with the doping concentration (DC) ranging from 0 to 5%. The emphasis was placed on the distinct effects of each individual dopant on the fundamental mechanical properties of graphene. The results indicated that incorporating the dopants into graphene led to an almost linear decrease in Young’s modulus. Monotonic reductions in ultimate strength, ultimate strain and energy absorption were also observed. Such doping effects were found to be most significant for silicon, less pronounced for boron, and small or negligible for nitrogen. The outputs provide an important guidance for the development and optimization of novel nanoscale devices, and facilitate the development of graphene-based M/NEMS.

Key Words

graphene doping mechanical properties molecular dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., et al., Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669.CrossRefGoogle Scholar
  2. 2.
    van den Brink, J., Graphene: from strength to strength. Nature Nanotechnology, 2007, 2(4): 199–201.CrossRefGoogle Scholar
  3. 3.
    Geim, A.K. and Novoselov, K.S., The rise of graphene. Nature Materials, 2007, 6(3): 183–191.CrossRefGoogle Scholar
  4. 4.
    Lee, C., Wei, X., Kysar, J.W. and Hone, J., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385–388.CrossRefGoogle Scholar
  5. 5.
    Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., et al., Superior thermal conductivity of single-layer graphene. Nano Letters, 2008, 8(3): 902–907.CrossRefGoogle Scholar
  6. 6.
    Areshkin, D.A. and White, C.T., Building blocks for integrated graphene circuits. Nano Letters, 2007, 7(11): 3253–3259.CrossRefGoogle Scholar
  7. 7.
    Brownson, D.A.C. and Banks, C.E., Limitations of CVD graphene when utilised towards the sensing of heavy metals. Rsc Advances, 2012, 2(12): 5385–5389.CrossRefGoogle Scholar
  8. 8.
    Schwierz, F., Graphene transistors. Nature Nanotechnology, 2010, 5(7): 487–496.CrossRefGoogle Scholar
  9. 9.
    Novoselov, K.S., Fal’ko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G. and Kim, K., A roadmap for graphene. Nature, 2012, 490(7419): 192–200.CrossRefGoogle Scholar
  10. 10.
    Hashimoto, A., Suenaga, K., Gloter, A., Urita, K. and Iijima, S., Direct evidence for atomic defects in graphene layers. Nature, 2004, 430(7002): 870–873.CrossRefGoogle Scholar
  11. 11.
    Meyer, J.C., Kisielowski, C., Erni, R., Rossell, M.D., Crommie, M.F. and Zettl, A., Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Letters, 2008, 8(11): 3582–3586.CrossRefGoogle Scholar
  12. 12.
    Carr, L.D. and Lusk, M.T., Defect engineering: Graphene gets designer defects. Nature Nanotechnology, 2010, 5(5): 316–317.CrossRefGoogle Scholar
  13. 13.
    He, L.C., Guo, S.S., Lei, J.C., Sha, Z.D. and Liu, Z.S., The effect of Stone-Thrower-Wales defects on mechanical properties of graphene sheets—a molecular dynamics study. Carbon, 2014, 75: 124–132.CrossRefGoogle Scholar
  14. 14.
    Sha, Z.D., Pei, Q.X., Liu, Z.S., Shenoy, V.B. and Zhang, Y.W., Is the failure of large-area polycrystalline graphene notch sensitive or insensitive? Carbon, 2014, 72: 200–206.CrossRefGoogle Scholar
  15. 15.
    Sha, Z.D., Quek, S.S., Pei, Q.X., Liu, Z.S., Wang, T.J., Shenoy, V.B., et al., Inverse pseudo hall-petch relation in polycrystalline graphene. Scientific Reports, 2014, 4: 5991.CrossRefGoogle Scholar
  16. 16.
    Riedl, C., Coletti, C. and Starke, U., Structural and electronic properties of epitaxial graphene on SiC(0001): a review of growth, characterization, transfer doping and hydrogen intercalation. Journal of Physics D—Applied Physics, 2010, 43(37): 374009.CrossRefGoogle Scholar
  17. 17.
    Guo, B.D., Liu, Q.A., Chen, E.D., Zhu, H.W., Fang, L.A. and Gong, J.R., Controllable N-doping of graphene. Nano Letters, 2010, 10(12): 4975–4980.CrossRefGoogle Scholar
  18. 18.
    Chi, M. and Zhao, Y.P., Adsorption of formaldehyde molecule on the intrinsic and Al-doped graphene: a first principle study. Computational Materials Science, 2009, 46(4): 1085–1090.CrossRefGoogle Scholar
  19. 19.
    Wang, X.R., Li, X.L., Zhang, L., Yoon, Y., Weber, P.K., Wang, H.L., et al., N-Doping of graphene through electrothermal reactions with ammonia. Science, 2009, 324(5928): 768–771.CrossRefGoogle Scholar
  20. 20.
    Lv, R.T. and Terrones, M., Towards new graphene materials: doped graphene sheets and nanoribbons. Materials Letters, 2012, 78: 209–218.CrossRefGoogle Scholar
  21. 21.
    Lv, R., Li, Q., Botello-Mendez, A.R., Hayashi, T., Wang, B., Berkdemir, A., et al., Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Scientific Reports, 2012, 2: 586.CrossRefGoogle Scholar
  22. 22.
    Wang, Y., Shao, Y.Y., Matson, D.W., Li, J.H. and Lin, Y.H., Nitrogen-doped graphene and its application in electrochemical biosensing. Acs Nano, 2010, 4(4): 1790–1798.CrossRefGoogle Scholar
  23. 23.
    Mortazavi, B., Ahzi, S., Toniazzo, V. and Remond, Y., Nitrogen doping and vacancy effects on the mechanical properties of graphene: a molecular dynamics study. Physics Letters A, 2012, 376(12–13): 1146–1153.CrossRefGoogle Scholar
  24. 24.
    Mortazavi, B. and Ahzi, S., Molecular dynamics study on the thermal conductivity and mechanical properties of boron doped graphene. Solid State Communications, 2012, 152(15): 1503–1507.CrossRefGoogle Scholar
  25. 25.
    Zheng, Q.B., Li, Z.G. and Yang, J.H., Effects of N doping and NH2 grafting on the mechanical and wrinkling properties of graphene sheets. Rsc Advances, 2013, 3(3): 923–929.CrossRefGoogle Scholar
  26. 26.
    Plimpton, S., Fast parallel algorithms for short-range molecular-dynamics. Journal of Computational Physics, 1995, 117(1): 1–19.CrossRefGoogle Scholar
  27. 27.
    Tersoff, J., Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Physical Review B: Condensed Matter and Materials Physics, 1989, 39(8): 5566–5568.CrossRefGoogle Scholar
  28. 28.
    Tersoff, J., Erratum: modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Physical Review B: Condensed Matter and Materials Physics, 1990, 41(5): 3248.Google Scholar
  29. 29.
    Bu, H., Chen, Y.F., Zou, M., Yi, H., Bi, K.D. and Ni, Z.H., Atomistic simulations of mechanical properties of graphene nanoribbons. Physics Letters A, 2009, 373(37): 3359–3362.CrossRefGoogle Scholar
  30. 30.
    Mortazavi, B., Remond, Y., Ahzi, S. and Toniazzo, V., Thickness and chirality effects on tensile behavior of few-layer graphene by molecular dynamics simulations. Computational Materials Science, 2012, 53(1): 298–302.CrossRefGoogle Scholar
  31. 31.
    Gupta, S., Dharamvir, K. and Jindal, V.K., Elastic moduli of single-walled carbon nanotubes and their ropes. Physical Review B: Condensed Matter and Materials Physics, 2005, 72(16): 165428.Google Scholar
  32. 32.
    Lindsay, L. and Broido, D.A., Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Physical Review B: Condensed Matter and Materials Physics, 2010, 81: 205441.CrossRefGoogle Scholar
  33. 33.
    Kinaci, A., Haskins, J.B., Sevik, C. and Cagin, T., Thermal conductivity of BN-C nanostructures. Physical Review B: Condensed Matter and Materials Physics, 2012, 86(11): 115410.CrossRefGoogle Scholar
  34. 34.
    Matsunaga, K., Fisher, C. and Matsubara, H., Tersoff potential parameters for simulating cubic boron carbonitrides. Japanese Journal of Applied Physics Part 2—Letters, 2000, 39(1ab): L48–L51.CrossRefGoogle Scholar
  35. 35.
    Moon, W.H., Son, M.S. and Hwang, H.J., Molecular-dynamics simulation of structural properties of cubic boron nitride. Physica B—Condensed Matter, 2003, 336(3–4): 329–334.CrossRefGoogle Scholar
  36. 36.
    Stuart, S.J., Tutein, A.B. and Harrison, J.A., A reactive potential for hydrocarbons with intermolecular interactions. Journal of Chemical Physics, 2000, 112(14): 6472–6486.CrossRefGoogle Scholar
  37. 37.
    Han, T.W., He, P.F., Wang, J., Zheng, B.L. and Wu, A.H., Strain rate dependences of tensile failure process for single graphene sheet: a molecular dynamics study. Science in China Series G: Physics, Mechanics, Astronomy, 2009, 39(9): 1312–1319.Google Scholar
  38. 38.
    Han, T.W., Luo, Y. and Wang, C.Y., Effects of temperature and strain rate on the mechanical properties of hexagonal boron nitride nanosheets. Journal of Physics D—Applied Physics, 2014, 47(2): 025303.Google Scholar
  39. 39.
    Chen, M.Q., Quek, S.S., Sha, Z.D., Chiu, C.H., Pei, Q.X. and Zhang, Y.W., Effects of grain size, temperature and strain rate on the mechanical properties of polycrystalline graphene—a molecular dynamics study. Carbon, 2015, 85: 135–146.CrossRefGoogle Scholar
  40. 40.
    Dumitrica, T., Hua, M. and Yakobson, B.I., Symmetry-, time-, and temperature-dependent strength of carbon nanotubes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(16): 6105–6109.CrossRefGoogle Scholar
  41. 41.
    Dumitrica, T. and Yakobson, B.I., Strain-rate and temperature dependent plastic yield in carbon nanotubes from ab initio calculations. Applied Physics Letters, 2004, 84(15): 2775–2777.CrossRefGoogle Scholar
  42. 42.
    Zhao, H. and Aluru, N.R., Temperature and strain-rate dependent fracture strength of graphene. Journal of Applied Physics, 2010, 108(6): 064321.Google Scholar
  43. 43.
    Swope, W.C., Anderson, H.C., Berens, P.H. and Wilson, K.R., A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. The Journal of Chemical Physics, 1982, 76(1): 637–649.CrossRefGoogle Scholar
  44. 44.
    Nose, S., A molecular dynamics method for simulation in the canonical ensemble. Molecular Physics, 1984, 52(2): 255–268.MathSciNetCrossRefGoogle Scholar
  45. 45.
    Hoover, W.G., Canonical dynamics: Equilibrium phase-space distributions. Physical Review A, 1985, 31(3): 1695–1697.CrossRefGoogle Scholar
  46. 46.
    Lee, C., Wei, X.D., Kysar, J.W. and Hone, J., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385–388.CrossRefGoogle Scholar
  47. 47.
    Gupta, A., Chen, G., Joshi, P., Tadigadapa, S. and Eklund, P.C., Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Letters, 2006, 6(12): 2667–2673.CrossRefGoogle Scholar
  48. 48.
    Salvetat, J.P., Bonard, J.M., Thomson, N.H., Kulik, A.J., Forro, L., Benoit, W., et al., Mechanical properties of carbon nanotubes. Applied Physics A—Materials Science & Processing, 1999, 69(3): 255–260.CrossRefGoogle Scholar
  49. 49.
    Wang, C.Y. and Zhang, L.C., A critical assessment of the elastic properties and effective wall thickness of single-walled carbon nanotubes. Nanotechnology, 2008, 19(7): 075705.Google Scholar
  50. 50.
    Liu, F., Ming, P.M. and Li, J., Ab initio calculation of ideal strength and phonon instability of graphene under tension. Physical Review B: Condensed Matter and Materials Physics, 2007, 76(6): 064120.Google Scholar
  51. 51.
    Zang, J.L., Yuan, Q.Z., Wang, F.C. and Zhao, Y.P., A comparative study of Young’s modulus of single-walled carbon nanotube by CPMD, MD and first principle simulations. Computational Materials Science, 2009, 46(3): 621–625.CrossRefGoogle Scholar
  52. 52.
    Pei, Q.X., Zhang, Y.W. and Shenoy, V.B., A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene. Carbon, 2010, 48(3): 898–904.CrossRefGoogle Scholar
  53. 53.
    Ni, Z.H., Bu, H., Zou, M., Yi, H., Bi, K.D. and Chen, Y.F., Anisotropic mechanical properties of graphene sheets from molecular dynamics. Physica B—Condensed Matter, 2010, 405(5): 1301–1306.CrossRefGoogle Scholar
  54. 54.
    Han, T.W., He, P.F., Wang, J. and Zheng, B.L., Molecular dynamics simulation of single graphene sheet under tension. New Carbon Materials, 2010, 25(4): 261–266.Google Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2015

Authors and Affiliations

  1. 1.Faculty of Civil Engineering and MechanicsJiangsu UniversityZhenjiangChina

Personalised recommendations